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Abstract. In this paper we present a concrete and a symbolic rewrit-
ing logic semantics for parametric time Petri nets with inhibitor arcs
(PITPNs). We show how this allows us to use Maude combined with SMT
solving to provide sound and complete formal analyses for PITPNs. We
develop a new general folding approach for symbolic reachability that ter-
minates whenever the parametric state-class graph of the PITPN is finite.
We explain how almost all formal analysis and parameter synthesis sup-
ported by the state-of-the-art PITPN tool Roméo can be done in Maude
with SMT. In addition, we also support analysis and parameter synthe-
sis from parametric initial markings, as well as full LTL model checking
and analysis with user-defined execution strategies. Experiments on three
benchmarks show that our methods outperform Roméo in some cases.
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1 Introduction

System designers often do not know in advance the concrete values of key sys-
tem parameters, and want to find those values that make the system behave as
desired. Parametric time Petri nets with inhibitor arcs (PITPNs) [2,20,28,49]
extend the popular time(d) Petri nets [22,30,51] to the setting where bounds on
when transitions can fire are unknown or only partially known.

The formal analysis of PITPNs—including synthesizing the values of the
parameters which make the system satisfy desired properties—is supported by
the state-of-the-art tool Roméo [29], which has been applied to a number of
applications, e.g., [3,19,46]. Roméo supports the analysis and parameter synthesis
for reachability (is a certain marking reachable?), liveness (will a certain marking
be reached in all behaviors?), time-bounded “until,” and bounded response (will
each P -marking be followed by a Q-marking within time Δ?), all from concrete
initial markings. Roméo does not support a number of desired features, including:
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– Broader set of system properties, e.g., full (i.e., nested) temporal logic.
– Starting with parametric initial markings and synthesizing also the initial

markings that make the system satisfy desired properties.
– Analysis with user-defined execution strategies. For example, what happens

if I always choose to fire transition t instead of t′ when they are both enabled?
– Providing a “testbed” for PITPNs in which different analysis methods can

quickly be developed and evaluated. This is not supported by Roméo, which
is a high-performance tool with dedicated algorithms implemented in C++.

PITPNs do not support many features needed for large distributed sys-
tems, such as user-defined data types and functions. Rewriting logic [31,32]—
supported by the Maude language and tool [18], and by Real-Time Maude [37,43]
for real-time systems—is an expressive logic for distributed and real-time sys-
tems. In rewriting logic, any computable data type can be specified as an (alge-
braic) equational specification, and the dynamic behaviors of a system are speci-
fied by rewriting rules over terms (representing states). Because of its expressive-
ness, Real-Time Maude has been successfully applied to a number of large and
sophisticated real-time systems—including 50-page active networks and IETF
protocols [27,44], industrial cloud systems [13,21], scheduling algorithms with
unbounded queues [39], airplane turning algorithms [8], and so on—beyond the
scope of most popular formalisms for real-time systems. Its expressiveness has
also made Real-Time Maude a useful semantic framework and formal analysis
backend for industrial modeling languages [1,9,36,38].

This expressiveness comes at a price: most analysis problems are undecidable
in general. Real-Time Maude uses explicit-state analysis where only some points
in time are visited. All possible system behaviors are therefore not analyzed (for
dense time domains), and hence the analysis is unsound in many cases [41].

This paper exploits the recent integration of SMT solving into Maude to
address the first problem above (more features for PITPNs) and to take the sec-
ond step towards addressing the second problem (developing sound and complete
analysis methods for rewriting-logic-based real-time systems).

Maude combined with SMT solving, e.g., as implemented in the Maude-SE
tool [53], allows us to perform symbolic rewriting of “states” φ || t, where the
term t is a state pattern that contains variables, and φ is an SMT constraint
restricting the possible values of those variables.

Section 3 defines a (non-executable) “concrete” rewriting logic semantics for
(instantiated) PITPNs in “Real-Time Maude style” [42], and proves that this
semantics is bisimilar to the one for PITPNs in [49]. Section 4 transforms this
semantics into a Maude-with-SMT semantics for parametric PITPNs, and shows
how to perform sound symbolic analysis of such nets using Maude-with-SMT.
However, existing symbolic reachability analysis methods may fail to terminate
even when the state class graph of the PITPN is finite (and hence Roméo analysis
terminates). We therefore develop a new method for “folding” symbolic states,
and show that reachability analysis with such folding terminates whenever the
state class graph of the PITPN is finite.

In Sect. 5 we show how all analysis methods supported by Roméo—with
one small exception: the time bounds in some temporal formulas cannot be
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parameters—also can be performed using Maude-with-SMT. In addition, we
support analysis and parameter synthesis for parametric initial markings, model
checking full temporal logic formulas, and analysis w.r.t. user-defined execution
strategies. Our methods are implemented in Maude, using its meta-programming
features. This makes it very easy to develop new analysis methods for PITPNs.

This work also constitutes the second step in our quest to develop sound
and complete analysis methods for dense-time real-time systems in Real-Time
Maude. We present both a Real-Time Maude-style semantics in Sect. 3 and the
symbolic semantics in Sect. 4 to explore how we can transform Real-Time Maude
models into Maude-with-SMT models for symbolic analysis. In our first step in
this quest, we studied symbolic rewrite methods for the much simpler parametric
timed automata [4]; see Sect. 7 for a comparison with that work.

In Sect. 6 we benchmark both Roméo and our Maude-with-SMT methods,
and find that in some cases our high-level prototype outperforms Roméo.

The longer report [6] has proofs of all results in this paper and much more
detail. All executable Maude files with analysis commands, tools for translating
Roméo files into Maude, and data from the benchmarking are available at [5].

2 Preliminaries

Transition Systems. A transition system A is a triple (A, a0,→A), where A is a
set of states, a0 ∈ A is the initial state, and →A ⊆ A×A is a transition relation.
We call A finite if the set of states reachable by →A from a0 is finite. A relation
∼⊆ A×B is a bisimulation [16] between A and B = (B, b0,→B) iff: (i) a0 ∼ b0;
and (ii) for all a, b s.t. a ∼ b: if a →A a′ then there is a b′ s.t. b →B b′ and a′ ∼ b′,
and, vice versa, if b →B b′′, then there is a a′′ s.t. a →A a′′ and a′′ ∼ b′′.

Parametric Time Petri Nets with Inhibitor Arcs (PITPN). N, Q+, and R+

denote, resp., the natural numbers, the non-negative rational numbers, and the
non-negative real numbers. We assume a finite set Λ = {λ1, . . . , λl} of time
parameters. A parameter valuation π is a function π : Λ → R+. A (linear)
inequality over Λ is an expression

∑
1≤i≤l aiλi ≺ b, where ≺∈ {<,≤,=,≥, >}

and ai, b ∈ R. A constraint is a conjunction of such inequalities. L(Λ) denotes
the set of all constraints over Λ. A parameter valuation π satisfies a constraint
K ∈ L(Λ), written π |= K, if the expression obtained by replacing each λ in K
with π(λ) evaluates to true. An interval I of R+ is a Q+-interval if its left
endpoint ↑I belongs to Q+ and its right endpoint I↑ belongs to Q+ ∪ {∞}. We
denote by I(Q+) the set of Q+-intervals. A parametric time interval is a function
I : Q+

Λ → I(Q+) that associates with each parameter valuation a Q+-interval.
The set of parametric time intervals over Λ is denoted I(Λ).

Definition 1. A parametric time Petri net with inhibitor arcs (PITPN) [49] is
a tuple N = 〈P, T, Λ, •(.), (.)•, ◦(.),M0, J,K0〉 where

– P = {p1, . . . , pm} is a non-empty finite set (of places),
– T = {t1, . . . , tn} is a non-empty finite set (of transitions), with P ∩ T = ∅,
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– Λ = {λ1, . . . , λl} is a finite set of parameters,
– •(.) ∈ [T → N

P ] is the backward incidence function,
– (.)• ∈ [T → N

P ] is the forward incidence function,
– ◦(.) ∈ [T → N

P ] is the inhibition function,
– M0 ∈ N

P is the initial marking,
– J ∈ [T → I(Λ)] assigns a parametric time interval to each transition, and
– K0 ∈ L(Λ) is the initial constraint over Λ.

If Λ = ∅ then N is a (non-parametric) time Petri net with inhibitor arcs (ITPN).

A marking of N is an element M ∈ N
P , where M(p) is the number of tokens

in place p. π(N ) denotes the ITPN where each occurrence of λi in the PITPN
N has been replaced by π(λi) for a parameter valuation π.

The concrete semantics of a PITPN N is defined in terms of concrete ITPNs
π(N ) where π |= K0. A transition t is enabled in M if M ≥ •t (the number of
tokens in M in each input place of t is greater than or equal to the value on the
arc between this place and t). A transition t is inhibited if the place connected to
one of its inhibitor arcs is marked with at least as many tokens as the weight of
the inhibitor arc. A transition t is active if it is enabled and not inhibited. The
sets of enabled and inhibited transitions in marking M are denoted Enabled(M)
and Inhibited(M), respectively. Transition t is firable if it has been (continuously)
enabled for at least time ↑J(t), without counting the time it has been inhibited.
Transition t is newly enabled by the firing of transition tf in M if it is enabled
in the resulting marking M ′ = M − •tf + t•f but was not enabled in M − •tf :

NewlyEnabled(t,M, tf ) = (•t ≤ M − •tf + t•f ) ∧ ((t = tf ) ∨ ¬(•t ≤ M − •tf )).

NewlyEnabled(M, tf ) denotes the transitions newly enabled by firing tf in M .
The semantics of an ITPN is defined as a transition system with states (M, I),

where M is a marking and I is a function mapping each transition enabled in
M to a time interval, and two kinds of transitions: time transitions where time
elapses, and discrete transitions when a transition in the net is fired.

Definition 2 (ITPN Semantics [49]). The transition system for an ITPN
π(N ) is Sπ(N ) = (A, a0,→), where: A = N

P × [T → I(Q)], a0 = (M0, J) and
(M, I) → (M ′, I ′) if there exist δ ∈ R+, t ∈ T , and state (M ′′, I ′′) such that
(M, I) δ→ (M ′′, I ′′) and (M ′′, I ′′) t→ (M ′, I ′), for the following relations:

– the time transition relation, defined ∀δ ∈ R+ by: (M, I) δ→ (M, I ′) iff ∀t ∈ T :⎧
⎨

⎩

I ′(t) =
{

I(t) if t ∈ Enabled(M) and t ∈ Inhibited(M)
↑I ′(t) = max(0, ↑I(t) − δ) and I ′(t)↑ = I(t)↑ − δ otherwise

M ≥ •(t) =⇒ I ′(t)↑ ≥ 0

– the discrete transition relation, defined ∀tf ∈ T by: (M, I)
tf→ (M ′, I ′) iff⎧

⎨

⎩

tf ∈ Enabled(M) ∧ tf �∈ Inhibited(M) ∧ M ′ = M − •tf + t•f ∧ ↑I(tf ) = 0

∀t ∈ T, I ′(t) =
{

J(t) if NewlyEnabled(t,M, tf )
I(t) otherwise
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The symbolic semantics of PITPNs is given in [2] as a transition system
(NP × L(Λ), (M0,K0),⇒) on state classes, i.e., pairs c = (M,D) consisting of
a marking M and a constraint D over Λ. The firing of a transition leads to a
new marking as in the concrete semantics, and also captures the new constraints
induced by the time that has passed for the transition to fire. See [2] for details.

Rewrite Theories. A rewrite theory [31] is a tuple R = (Σ,E,L,R) where

– the signature Σ declares sorts, a subsort partial order, and function symbols;
– E is a set of equations of the form t = t′ if ψ, where t and t′ are Σ-terms of

the same sort, and ψ is a conjunction of equations;
– L is a set of labels; and
– R is a set of rewrite rules of the form l : q −→ r if ψ, where l ∈ L is a label,

q and r are Σ-terms of the same sort, and ψ is a conjunction of equations.

TΣ,s denotes the set of ground (i.e., variable-free) terms of sort s, and TΣ(X)s
the set of terms of sort s over a set of variables X. TΣ(X) and TΣ denote all
terms and ground terms, respectively. A substitution σ : X → TΣ(X) maps
each variable to a term of the same sort, and tσ denotes the term obtained by
simultaneously replacing each variable x in a term t with σ(x).

A one-step rewrite t −→R t′ holds if there is a rule l : q −→ r if ψ, a subterm
u of t, and a substitution σ such that u = qσ (modulo equations), t′ is the term
obtained from t by replacing u with rσ, and vσ = v′σ holds for each v = v′ in ψ.
We denote by −→∗

R the reflexive-transitive closure of −→R. A rewrite theory R
is topmost iff there is a sort State at the top of one of the connected components
of the subsort partial order such that for each rule, both sides have the top sort
State, and no operator has sort State or any of its subsorts as an argument sort.

Rewriting with SMT [47]. For a signature Σ and equations E, a built-in theory
E0 is a first-order theory with a signature Σ0 ⊆ Σ, where (1) each sort s in Σ0

is minimal in Σ; (2) s /∈ Σ0 for each operator f : s1 × · · · × sn → s in Σ \ Σ0;
and (3) f has no other subsort-overloaded typing in Σ0. The satisfiability of a
constraint in E0 is assumed decidable using the SMT theory TE0 .

A constrained term is a pair φ ‖ t of a constraint φ in E0 and a term t in
TΣ(X0) over variables X0 ⊆ X of the built-in sorts in E0 [11,47]. A constrained
term φ ‖ t symbolically represents all instances of the pattern t such that φ holds:
�φ ‖ t� = {t′ | t′ = tσ (modulo E) and TE0 |= φσ for ground σ : X0 → TΣ0}.

Let R be a topmost theory such that for each rule l : q −→ r if ψ, extra
variables not occurring in the left-hand side q are in X0, and ψ is a constraint
in a built-in theory E0. A one-step symbolic rewrite φ ‖ t �R φ′ ‖ t′ holds iff
there exist a rule l : q −→ r if ψ and a substitution σ : X → TΣ(X0) such that
(1) t = qσ and t′ = rσ (modulo equations), (2) TE0 |= (φ ∧ ψσ) ⇔ φ′, and (3) φ′

is TE0-satisfiable. We denote by �∗
R the reflexive-transitive closure of �R.

A symbolic rewrite on constrained terms symbolically represents a (possibly
infinite) set of system transitions. If φt ‖ t �∗ φu ‖ u is a symbolic rewrite, then
there exists a “concrete” rewrite t′ −→∗ u′ with t′ ∈ �φt ‖ t� and u′ ∈ �φu ‖ u�.
Conversely, for any concrete rewrite t′ −→∗ u′ with t′ ∈ �φt ‖ t�, there exists a
symbolic rewrite φt ‖ t �∗ φu ‖ u with u′ ∈ �φu ‖ u�.
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Maude. Maude [18] is a language and tool supporting the specification and
analysis of rewrite theories. We summarize its syntax below:

sorts S ... Sk . --- Declaration of sorts S1,..., Sk
subsort S1 < S2 . --- Subsort relation
vars X1 ... Xm : S . --- Logical variables of sort S
op f : S1 ... Sn -> S . --- Operator S1 x ... x Sn -> S
ceq t = t’ if c . --- Conditional equation
crl [l] : q => r if c . --- Conditional rewrite rule

Maude provides a number of analysis methods, including computing the normal
form of a term t (red t), simulation by rewriting (rew t), and rewriting following a
given strategy (srew t using str). Basic strategies include r[σ] (apply rule r once
with the optional ground substitution σ) and all (apply any of the rules once).
Compound strategies include concatenation (α ; β), α or-else β (execute β if
α fails), normalization α ! (execute α until it cannot be further applied), etc.

Maude also offers explicit-state reachability analysis from a ground term t
(search [n,m] t =>* t′ such that Φ) and model checking an LTL formula F
(red modelCheck(t, F)). For symbolic reachability analysis, the command

smt-search [n, m]: t =>* t′ such that Φ --- n and m are optional

symbolically searches for n states, reachable from t ∈ TΣ(X0) within m steps,
that match the pattern t′ ∈ TΣ(X) and satisfy the constraint Φ in E0.

Maude provides built-in sorts Boolean, Integer, and Real for the SMT the-
ories of booleans, integers, and reals. Rational constants of sort Real are written
n/m (e.g., 0/1). Maude-SE [53] extends Maude with additional functionality for
rewriting modulo SMT and bindings with different SMT solvers.

3 A Rewriting Logic Semantics for ITPNs

This section presents a rewriting logic semantics for (non-parametric) ITPNs,
using a (non-executable) rewrite theory R0. We provide a bisimulation relating
the concrete semantics of a net N and a rewrite relation in R0, and discuss vari-
ants of R0 to avoid consecutive tick steps and to enable time-bounded analysis.

3.1 Formalizing ITPNs in Maude: The Theory R0

We fix N to be the ITPN 〈P, T, ∅, •(.), (.)•, ◦(.),M0, J, true〉, and show how
ITPNs and markings of such nets can be represented as Maude terms.

The usual approach is to represent a transition ti and a place pj as
a constant of sort Label and Place, respectively (e.g., ops p1 p2 ... pm

: -> Place [ctor]). To use a single rewrite theory R0 to define the semantics
of all ITPNs, we instead assume that places and transition (labels) can be repre-
sented as strings; i.e., there is an injective naming function η : P ∪ T → String
which we usually do not mention explicitly.1

1 We do not show variable declarations, but follow the convention that variables are
written in (all) capital letters.
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protecting STRING . protecting RAT .
sorts Label Place . --- identifiers for transitions and places
subsorts String < Label Place . --- we use strings for simplicity
sorts Time TimeInf . --- time values
subsort Zero PosRat < Time < TimeInf .
op inf : -> TimeInf [ctor] .
eq T <= inf = true .

The sort TimeInf adds an “infinity” value inf to the sort Time of time values,
which are the non-negative rational numbers (PosRat).

The “standard” way of formalizing Petri nets in rewriting logic [31,48] repre-
sents, e.g., a marking with two tokens in place p and three tokens in place q as
the Maude term p p q q q. This is crucial to support concurrent firings of tran-
sitions in a net. Since the semantics of PITPNs is an interleaving semantics, to
enable rewriting-with-SMT-based analysis from parametric initial markings, we
instead represent markings as maps from places to the number of tokens in that
place, so that the above marking is represented by the Maude term η(p) |-> 2
; η(q) |-> 3 of sort Marking. The Maude term η(t) : pre –> post inhibit
inhibit in interval represents a transition t ∈ T , where pre, post, and inhibit
are markings representing, respectively, •(t), (t)•, ◦(t); and interval represents
the interval J(t). A Net is represented as a ;-separated set of such transitions:

sort Marking . --- Markings
op empty : -> Marking [ctor] .
op _|->_ : Place Nat -> Marking [ctor] .
op _;_ : Marking Marking -> Marking [ctor assoc comm id: empty] .
sort Interval . --- Time intervals (upper bound can be infinite)
op ‘[_:_‘] : Time TimeInf -> Interval [ctor] .
sorts Net Transition . subsort Transition < Net .
op _‘:_-->_inhibit_in_ :

Label Marking Marking Marking Interval -> Transition [ctor] .
op emptyNet : -> Net [ctor] .
op _;_ : Net Net -> Net [ctor assoc comm id: emptyNet] .

Example 1. Assuming the obvious naming function η mapping A to "A", and so
on, the Maude term net3(a) represents the net in Fig. 1:

op net3 : Time -> Net .
eq net3(T) =

"t1" : "p5" |-> 1 --> "p1" |-> 1 inhibit empty in [2 : 6] ;
"t2" : "p1" |-> 1 --> "p2" |-> 1 ; "p5" |-> 1 inhibit empty in [2 : 4] ;
"t3" : "p2" |-> 1 ; "p4" |-> 1 --> "p3" |-> 1 inhibit empty in [T : T] ;
"t4" : "p3" |-> 1 --> "p4" |-> 1 inhibit empty in [0 : 0] .

It is very easy to define operations +, -, and <= on markings (see [6]); we can
then check whether a transition is active in a marking:

op active : Marking Transition -> Bool . --- Active transition
eq active(M, L : PRE --> POST inhibit INHIBIT in INTERVAL) =

(PRE <= M) and not inhibited(M, INHIBIT) .
op inhibited : Marking Marking -> Bool . --- Inhibited transition
eq inhibited(M, empty) = false .
eq inhibited((P |-> N2) ; M, (P |-> N) ; INHIBIT) =

((N > 0) and (N2 >= N)) or inhibited(M, INHIBIT) .
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p5

p1 p2 p3

p4

t1[2 : 6] t2[2 : 4] t3[a : a] t4[0 : 0]

Fig. 1. A simple production-consumption system taken from [52]

Dynamics. We define the dynamics of ITPNs as a Maude “interpreter” for such
nets. The definition of the semantics in [49] adjusts the “time intervals” of non-
inhibited transitions when time elapses, but seems slightly “inconsistent”: Time
interval end-points should be non-negative, and only enabled transitions have
intervals in the states; however, the definition of time and discrete transitions
in [49] mentions ∀t ∈ T, I ′(t) = ... and M ≥ •(t) =⇒ I ′(t)↑ ≥ 0. Taking the
definition of time and transition steps in [49] leads us to time intervals where
the right end-points of disabled transitions could have arbitrarily large negative
values. To have a simple and well-defined semantics, we use “clocks” instead of
“decreasing intervals”; a clock denotes how long the corresponding transition has
been enabled (but not inhibited). Our semantics is equivalent to the (natural
interpretation of the) one in [49] in a way made precise in Theorem 1.

The sort ClockValues (see [6]) denotes sets of ;-separated terms η(t) -> τ ,
where t is the (label of the) transition and τ represents the current value of
t’s “clock.” The states in R0 are terms m : clocks :net of sort State, where m
represents the current marking, clocks the current values of the transition clocks,
and net the representation of the Petri net:

sort State . op _:_:_ : Marking ClockValues Net -> State [ctor] .

The following rewrite rule models the application of a transition L. Since _;_
is associative and commutative, any transition L in the net can be applied:

crl [applyTransition] :
M : (L -> T) ; CLOCKS :
(L : PRE –-> POST inhibit INHIBIT in INTERVAL) ; NET

=> (M - PRE) + POST : L -> 0 ; updateClocks(CLOCKS, M - PRE, NET) :
(L : PRE –-> POST inhibit INHIBIT in INTERVAL) ; NET’

if active(M, L : PRE –-> POST inhibit INHIBIT in INTERVAL)
and (T in INTERVAL) .

The transition L is active in the marking M and its clock value T is in the
INTERVAL. After performing the transition, the marking is (M - PRE) + POST, the
clock of L is reset and the other clocks are updated using the following function:

eq updateClocks((L’ -> T’) ; CLOCKS, INTERM-M,
(L’ : PRE –-> POST inhibit INHIBIT in INTERVAL) ; NET)

= if PRE <= INTERM-M then (L’ -> T’) else (L’ -> 0) fi ;
updateClocks(CLOCKS, INTERM-M, NET) .

eq updateClocks(empty, INTERM-M, NET) = empty .

The second rewrite rule in R0 specifies how time advances. Time can advance
by any value T, as long as time does not advance beyond the time when an active
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transition must be taken. The clocks are updated according to the elapsed time
T, except for those transitions that are disabled or inhibited:

crl [tick] : M : CLOCKS : NET => M : increaseClocks(M, CLOCKS, NET, T) : NET
if T <= mte(M, CLOCKS, NET) [nonexec] .

This rule is not executable ([nonexec]), since the variable T, which denotes how
much time advances, only occurs in the right-hand side of the rule. T is therefore
not assigned any value by the substitution matching the rule with the state
being rewritten. This time advance T must be less or equal to the minimum of
the upper bounds of the enabled transitions in the marking M:2

op mte : Marking ClockValues Net -> TimeInf .
eq mte(M, (L -> T) ; CLOCKS, (L : PRE --> POST ... in [T1 : inf]) ; NET)
= mte(M, CLOCKS, NET) .

eq mte(M, (L -> T) ; CLOCKS, (L : PRE --> ... in [T1 : T2]) ; NET)
= if active(M, L : PRE --> ...) then min(T2 - T, mte(M, CLOCKS, NET))

else mte(M, CLOCKS, NET) fi .
eq mte(M, empty, NET) = inf .

The function increaseClocks increases the transitions clocks according to
the elapsed time, except for those transitions that are disabled or inhibited:

op increaseClocks : Marking ClockValues Net Time -> ClockValues .
eq increaseClocks(M, (L -> T1) ; CLOCKS, (L : PRE --> ...) ; NET, T)
= if active(M, L : PRE --> ...)

then (L -> T1 + T) else (L -> T1) fi ; increaseClocks(M, CLOCKS,NET,T) .
eq increaseClocks(M, empty, NET, T) = empty .

The function [[_]]R0 (see [6] for its formal definition) formalizes how markings
and nets are represented as terms in rewriting logic.3

To show that R0 correctly simulates any ITPN N , we provide a bisimulation
relating behaviors from a0 = (M0, J) in N with behaviors in R0 starting from
initial state [[M0]]R0 : initClocks([[N ]]R0) : [[N ]]R0 , where initClocks(net) is
a clock valuation which assigns the value 0 to each transition (label) η(t) in net .

Since a transition in N consists of a delay followed by a discrete transi-
tion, we define a corresponding rewrite relation �→ combining the tick and
applyTransition rules, and prove (in [6]) the bisimulation for this relation. The
following relation relates our clock-based states with the interval-based states:

Definition 3. Let N be an ITPN and SN = (A, a0,→) its concrete semantics.
We define a relation ≈⊆ A × TΣ,State, relating states in the concrete semantics
of N to states in R0, where for all states (M, I) ∈ A, (M, I) ≈ m : clocks : net
if and only if m = [[M ]]R0 and net = [[N ]]R0 and for each transition t ∈ T ,

– the value of η(t) in clocks is 0 if t is not enabled in M ;
– otherwise:

• if J(t)↑ �= ∞ then the value of clock η(t) in clocks is J(t)↑ − I(t)↑;
• otherwise, if ↑I(t) > 0 then η(t) has the value ↑J(t) − ↑I(t) in clocks;

otherwise, the value of η(t) in clocks could be any value τ ≥ ↑J(t).
2 Parts of Maude specification will be replaced by ‘...’ throughout the paper.
3 [[_]]R0 is parametrized by the naming function η, not shown explicitly here.
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Theorem 1. ≈ is a bisimulation between transition systems SN = (A, a0,→)
and (TΣ,State, ([[M0]]R0 : initClocks([[N ]]R0) : [[N ]]R0), �→).

3.2 Some Variations of R0

The theory R1 avoids consecutive applications of the tick rule by adding a new
component—with value tickOk or tickNotOk—to the global state. The tick rule
can only be applied when this component is tickOk. We add a new constructor
_:_:_:_ for these global states, a new sort TickState with values tickOk and
tickNotOk, and add two rewrite rules:

sort TickState . ops tickOk tickNotOk : -> TickState [ctor] .
op _:_:_:_ : TickState Marking ClockValues Net -> State [ctor] .
crl [applyTransition] :

TS : M : ((L -> T) ; CLOCKS) : (L : PRE --> ...) ; NET) =>
tickOk : ((M - PRE) + POST) : ... if active(...) and (T in INTERVAL) .

crl [tick] : tickOk : M : ... => tickNotOk : M : increaseClocks(...) ...
if T <= mte(M, CLOCKS, NET) [nonexec] .

We prove in [6] that m : cs : net −→∗
R0

m′ : cs ′ : net iff tickOk :m : cs : net
−→∗

R1
tickNotOk : m′ : cs ′ : net . While reachability is preserved, a tick rule

application in R1, where time does not advance far enough for a transition to
be taken, could lead to a deadlock in R1 which cannot happen in R0.

The theory R2 adds a “global clock”, denoting how much time has elapsed in
the system, to answer questions such as whether a certain state can be reached
in a certain time interval, and to enable time-bounded analysis where behaviors
beyond the time bound are not explored. R2 adds the “global time,” to the state:

op _:_:_:_@_ : TickState Marking ClockValues Net Time -> State [ctor] .

The rewrite rules are modified as expected. For instance, the rule tick becomes:

crl [tick] : tickOk : M : CLOCKS : NET @ GT
=> tickNotOk : M : increaseClocks(..., T) : NET @ GT + T

if T <= mte(M, CLOCKS, NET) [nonexec] .

where GT is a variable of sort Time. For a time bound Δ, we can add a conjunct
GT + T <= Δ in the condition of this rule to stop executing beyond the time bound.

3.3 Explicit-state Analysis of ITPNs in Maude

The theories R0–R2 cannot be directly executed in Maude, since the tick rule
introduces a new variable T in its right-hand side. Following the Real-Time
Maude methodology, we can “sample” system execution at some time points, e.g.,
by changing the tick rule to increase time by one time unit in each application:

crl [tickOne] : M : CLOCKS : NET => M : increaseClocks(M, CLOCKS, NET, 1) : NET
if 1 <= mte(M, CLOCKS, NET) .

Such time sampling analysis is in general not sound and complete, since it does
not cover all possible system behaviors for dense time domains. Nevertheless, if
all interval bounds are natural numbers, then “all behaviors” should be covered.
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We can quickly experiment with different parameter values for our model,
before applying the sound and complete symbolic methods developed in Sects. 4
and 5. Our report [6] describes a wealth of such analyses, including LTL model
checking and time-bounded analysis. Here we just check whether the net in Fig. 1
is 1000-safe when a = 5, where the term init3 denotes the initial marking in
Fig. 1. We define a function k-safe, where k-safe(n,m) holds iff the marking
m does not have any place with more than n tokens:

op k-safe : Nat Marking -> Bool .
eq k-safe(N, empty) = true .
eq k-safe(N1, P |-> N2 ; M) = N2 <= N1 and k-safe(N1, M) .

We can then quickly check whether the net is 1000-safe when a = 5:

Maude> search [1] init3 : initClocks(net3(5)) : net3(5) =>*
M : CLOCKS : NET such that not k-safe(1000, M) .

Solution 1 (state 83924)
M -->"p1" |-> 0 ; "p2" |-> 1001 ; "p3" |-> 0 ; "p4" |-> 1 ; "p5" |-> 1

The net is not 1000-safe: we reached a state with 1001 tokens in place p2. Similar
searches show that the net is 2-safe (but not 1-safe) if a = 4 and 1-safe if a = 3.

4 Parameters and Symbolic Executions

Standard explicit-state Maude analysis of R0–R2 cannot be used to analyze all
behaviors of PITPNs for two reasons: (1)The rule tick introduces a newvariable T
in its right-hand side, reflecting that time can advance by any value T <= mte(...);
and (2) analyzing nets with uninitialized parameters is impossible with explicit-
state Maude analysis of concrete states. (For example, the condition T in INTERVAL
in rule applyTransition does not evaluate to true if INTERVAL is not a concrete
interval, and hence the rule will never be applied.) Maude-SE analysis of symbolic
states with SMT variables can solve both issues, by symbolically representing the
time advances T and the uninitialized parameters.

This section defines a rewrite theory RS
1 that faithfully models PITPNs and

that can be symbolically executed using Maude-SE. We prove that (concrete)
executions in R1 are captured by (symbolic) executions in RS

1 , and vice versa.
We also show that standard folding techniques [33] in rewriting modulo SMT
are not sufficient for collapsing equivalent symbolic states in RS

1 . We therefore
propose a new folding technique that guarantees termination of the reachability
analyses of RS

1 when the state-class graph of the encoded PITPN is finite.

4.1 The Symbolic Rewriting Logic Semantics

We define the “symbolic” semantics of PITPNs using the rewrite theory RS
1 ,

which is the symbolic counterpart of R1, instead of basing it on R0, since a
symbolic “tick” step represents all possible tick steps from a symbolic state. We
therefore do not introduce deadlocks not possible in the corresponding PITPN.
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RS
1 is obtained from R1 by replacing the sort Nat in markings and the

sort PosRat for clock values with the corresponding SMT sorts Integer and
Real. (The former is only needed to enable reasoning with symbolic initial states
where the number of tokens in a location is unknown). Conditions in rules (e.g.,
M1 <= M2) are replaced with the corresponding SMT expressions of sort Boolean.
The symbolic execution of RS

1 in Maude-SE will accumulate and check the sat-
isfiability of the constraints needed for a parametric transition to happen.

We start by declaring the sort Time as follows:

sorts Time TimeInf . subsort Real < Time < TimeInf .
op inf : -> TimeInf [ctor] .

where Real is the sort for SMT reals (constraints in rewrite rules guarantee
that only non-negative numbers are considered). Intervals are defined as in R0.
Since Real is a subsort of Time, a parametric interval [a, b] in a PITPN can be
represented in RS

1 as the term [a:Real : b:Real], where a and b are variables
of sort Real. The definition and operations on markings, nets, and clock values
are similar to those in Sect. 3.1, albeit with the appropriate SMT sorts.

The rewrite rules in RS
1 act on symbolic states that may contain SMT vari-

ables. Although these rules are similar to those in R1, their symbolic execution
is completely different. Maude-SE defines a theory transformation to implement
symbolic rewriting. In the resulting theory R̂S

1 , when a rule is applied, the vari-
ables occurring in the right-hand side but not in the left-hand side are replaced
by fresh variables. Moreover, rules in R̂S

1 act on constrained terms of the form
φ ‖ t, where t in this case is a term of sort State and φ is a satisfiable SMT
boolean expression. The constraint φ is obtained by accumulating the conditions
in rules, thereby restricting the possible values of the variables in t.

The tick rewrite rule in RS
1 is

crl [tick] : tickOk : M : CLOCKS : NET
=> tickNotOk : M : increaseClocks(M, CLOCKS, NET, T) : NET

if (T >= 0/1 and mte(M, CLOCKS, NET, T)) = true .

The variable T is restricted to be a non-negative real number and to satisfy
the following predicate mte, which gathers the constraints to ensure that time
cannot advance beyond the point in time when an enabled transition must fire:

op mte : Marking ClockValues Net Real -> Boolean .
eq mte(M, empty, NET, T) = true .
eq mte(M, (L -> R1) ; CLOCKS, (L : PRE --> ... in [T1 : inf]) ; NET, T)
= mte(M, CLOCKS, NET, T) .

eq mte(M, (L -> R1) ; CLOCKS, (L : PRE --> ... in [T1 : T2]) ; NET, T)
= (active(M, L : ...) ? T <= T2 - R1 : true) and mte(M, CLOCKS, NET, T) .

This means that, for every transition L, if the upper bound of the interval in
L is inf, no restriction on T is added. Otherwise, if L is active at marking M, the
SMT ternary operator C ? E1 : E2 (checking C to choose either E1 or E2) further
constrains T to be less than T2 - R1. The definition of increaseClocks also uses
this SMT operator to represent the new values of the clocks:

eq increaseClocks(M, (L -> R1) ; CLOCKS, (L : PRE --> ... ) ; NET, T)
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= (L -> (active(M, L : PRE ...) ? R1 + T : R1 )) ;
increaseClocks(M, CLOCKS, NET, T) .

The rule for applying a transition is defined as follows:

crl [applyTransition] :
TS : M : ((L -> T) ; CLOCKS) : (L : PRE --> ...) ; NET)

=> tickOk : ((M - PRE) + POST) : updateClocks(...) :
(L : PRE --> ... ; NET) if (active(...) and (T in INTERVAL)) = true .

When applied, this rule adds new constraints asserting that the transition L
can be fired (predicates active and _in_) and updates the state of the clocks:

eq updateClocks((L’ -> R1) ; CLOCKS, INTERM-M, (L’ : PRE --> ...); NET)
= (L -> PRE <= INTERM-M ? R1 : 0/1) ; updateClocks(...) .

Example 2. Let net and m0 be the Maude terms representing, respectively, the
PITPN and the initial marking shown in Fig. 1. The term net includes a variable
a:Real representing the parameter a. The command

smt-search tickOk : m0 : initClocks(net) : net =>* TICK : M : CLOCKS : NET
such that (a:Real >= 0/1 and not k-safe(1, M)) = true .

checks whether it is possible to reach a non-1-safe marking. Maude positively
answers this question, with resulting accumulated constraint telling us that such
a state is reachable (with 2 tokens in p2) if a:Real >= 4/1.

Terms of sort Marking in RS
1 may contain expressions with parameters (i.e.,

variables) of sort Integer. Let Λm denote the set of such parameters and πm :
Λm → N a valuation function for them. We use ms to denote a mapping from
places to Integer expressions including parameter variables. Similarly, clockss

denotes a mapping from transitions to Real expressions (including variables).
We write πm(ms) to denote the ground term where the parameters in markings
are replaced by the corresponding values πm(λi). Similarly for π(clockss). We
use [[N ]]RS

1
to denotes the above rewriting logic representation of nets in RS

1 .
Recall that t ∈ [[φ ‖ ts]] is a ground instance, with a suitable ground sub-

stitution σ, of the constrained term φ ‖ ts. By construction, in RS
1 , if for all

t ∈ [[φ ‖ ts]] all markings (sort Integer), clocks and parameters (Real) are non-
negative numbers, then this is also the case for all reachable states from φ ‖ ts.
Hence, there is a one-to-one correspondence for ground terms in RS

1 satisfying
that condition with terms in R1. We use t ≈∈ [[φ ‖ ts]] to denote that there
exists a RS

1 -term t′ ∈ [[φ ‖ ts]] and t is its corresponding term in R1. Note that
the ground substitution σ (t′ = tsσ) determines a parameter (π) and a marking
(πm) valuation consistent with the constraint φ (TE0 |= φσ).

The following theorem states that the symbolic semantics matches all the
behaviors resulting from a concrete execution of R1 with arbitrary parameter
valuations π and πm. Furthermore, for all symbolic executions with parame-
ters, there exists a corresponding concrete execution where the parameters are
instantiated with values consistent with the resulting accumulated constraint.

Theorem 2 (Soundness and Completeness). Let N be a PITPN and φ be
the constraint

∧
J(t),t∈T (0 ≤ ↑J(t) ≤ J(t)↑)∧

∧
λi∈Λm

(0 ≤ λi). (1) If φ ‖ ts �∗
RS

1
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φ′ ‖ t′s then, there exist t′ and t ≈∈ [[φ ‖ ts]] (and the corresponding valuations π
and πm) such that t −→∗

R1
t′ and t′ ≈∈ [[φ′ ‖ t′s]].

(2) If t −→∗
R1

t′ with t ≈∈ [[φ ‖ ts]], then there exists φ′ ‖ t′s such that t′ ≈∈
[[φ′ ‖ t′s]] and φ ‖ ts �∗

RS

1
φ′ ‖ t′s.

The symbolic counterpart RS
2 of the theory R2 can be defined similarly.

4.2 A New Folding Method for Symbolic Reachability

Reachability analysis should terminate for both positive and negative queries
for nets with finite parametric state-class graphs. However, this is not the case
in analysis with RS

1 : the symbolic state space generated by smt-search is infi-
nite even for such nets. The problem is that smt-search stops exploring from a
symbolic state only if it has already visited the same state. Moreover, due to
the fresh variables created in RS

1 , symbolic states representing the same set of
concrete states are not the same, even though they are logically equivalent. For
instance, if we use smt-search to try to show that the PITPN in Fig. 1 is 1-safe
if 0 ≤ a < 4, such a command does not terminate. In fact, the command

smt-search tickOk : m0 : 0-clock(net) : net =>* TICK : M : CLOCKS : NET
such that (a:Real >= 0/1 and a:Real < 4 and M <= m0 and m0 <= M) = true .

searching for reachable states where M = m0 will produce infinitely many equiv-
alent solutions, where the state of the system is represented by different (new)
variables but subject to equivalent constraints.

The usual approach for collapsing equivalent symbolic states in rewriting
modulo SMT is subsumption [33]. Essentially, we stop searching from a sym-
bolic state if, during the search, we have already encountered another state that
subsumes (“contains”) it. Let U = φu ‖ tu and V = φv ‖ tv be constrained terms.
Then U � V if there is a substitution σ such that tu = tvσ and the implication
φu ⇒ φvσ holds. In that case, �U� ⊆ �V � and U does not need to be further
explored if V has already been encountered.

Reachability analysis with folding is sound [7] but not necessarily complete
(since �U� ⊆ �V � does not imply U � V ) [33]. In fact, if we take two solutions
U and V from the above smt-search command and use the Maude’s command
match to find the needed substitution σ, the SMT solver determines that the
formula ¬(φu ⇒ φvσ) is satisfiable (and therefore φu ⇒ φvσ is not valid). Hence,
a procedure based on checking this implication will fail to determine that U � V .

The satisfiability witnesses of ¬(φu ⇒ φvσ) show that the values for markings
and clocks in the current time instant are equally constrained in φu and φv

(and hence, they represent the same set of concrete states). However, since the
variables representing the current state are different, the implication is falsifiable.

In the following, we propose a subsumption relation that solves the afore-
mentioned problems. Let φ ‖ t be a constrained term where t is a term of sort
State. Consider an abstraction of built-ins (t◦, σ◦) for t [47], where t◦ is as t but
it replaces the expression ei in markings (pi �→ ei) and clocks (li → ei) with new
fresh variables. The substitution σ◦ is defined accordingly in such a way that
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t = t◦σ◦. Let Ψσ◦ =
∧

x∈dom(σ◦) x = xσ◦, where dom(σ) = {x ∈ X | σ(x) �= x}.
We use (φ ‖ t) ⇓now to denote the constrained term φ ∧ Ψσ◦ ‖ t◦. Intuitively,
(φ ‖ t) ⇓now replaces the clock values and markings with fresh variables, and the
boolean expression Ψσ◦ constrains those variables to take the values of clocks
and the marking in t. From [47] we can show that [[φ ‖ t]] = [[(φ ‖ t) ⇓now]].

Note that the only variables occurring in (φ ‖ t) ⇓now are those for parameters
(if any) and the fresh variables in dom(σ◦) (representing the symbolic state of
clocks and markings). For a constrained term φ ‖ t, we use ∃(φ ‖ t) to denote
the formula (∃X)φ where X = vars(φ) \ vars(t).

Definition 4 (Relation �). Let U = φu ‖ tu and V = φv ‖ tv be constrained
terms where tu and tv are terms of sort State. Moreover, let U ⇓now= φ′

u ‖ t′u
and V ⇓now= φ′

v ‖ t′v, where vars(t′u) ∩ vars(t′v) = ∅. We define the relation �
on constrained terms so that U � V whenever there exists a substitution σ such
that t′u = t′vσ and the formula ∃(U ⇓now) ⇒ ∃(V ⇓now)σ is valid.

The formula ∃(U ⇓now) hides the information about all the tick variables as
well as the information about the clocks and markings in previous time instants.
What we obtain is the information about the parameters, clocks and markings
“now”. Moreover, if tu and tv above are both tickOk states (or both tickNotOk
states), and they represent two symbolic states of the same PITPN, then t′u and
t′v always match (σ being the identity on the variables representing parameters
and mapping the corresponding variables created in V ⇓now and U ⇓now).

Theorem 3 (Soundness and Completeness) Let U and V be constrained
terms for two symbolic states of the same PITPN. Then, [[U ]] ⊆ [[V ]] iff U � V .

We have implemented a new symbolic reachability analysis using the folding
relation in Definition 4. Building on the theory transformation [47] implemented
in Maude-SE, we transform RS

1 into a rewrite theory RfS
1 that rewrites terms

of the form S : φ ‖ t where S is a set of constrained terms (the already visited
states). Theory RfS

1 defines an operator subsumed(φ ‖ t , S) that reduces to
true—by a call to the SMT solver Z3 for quantifier elimination and satisfiability
checking—iff there exists φ′ ‖ t′ ∈ S s.t φ ‖ t � φ′ ‖ t′. Rules in RS

1 are
systematically transformed to add a further constraint: the new state on the
right-hand side of the rule is not subsumed by a state in the set S.

In RfS
1 , for an initial constraint φ on the parameters, the Maude com-

mand search [n,m] empty : φ ‖ t =>* S : φ′ ‖ t′ such that smtCheck(φ′ and Φ)d
answers the question whether it is possible to reach a symbolic state that matches
t′ and satisfies the condition Φ. In the following, we use init(net,m0, φ) to
denote the term empty : φ ‖ tickOk : m0 :initClocks(net) : net.

Example 3. Consider the PITPN in Fig. 1. Let m0 be the marking in the figure
and φ = 0 ≤ a < 4. The command

search init(net, m0, φ) =>* S : φ′ ‖ ( TICK : M : CLOCKS : NET )
such that smtCheck(φ′ and not k-safe(1,M)) .
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terminates returning No solution, showing that the net is 1-safe if 0 ≤ a < 4.

If the set of reachable state classes in the symbolic semantics of N in [2] is finite,
then so is the set of reachable symbolic states with the new folding method:

Corollary 1. For any PITPN N and state class (M,D), if the transition system
(C, (M,D),⇒) is finite, then so is

(
TΣ,State, init(N ,M,D),�RfS

1

)
.

The new folding relation is applicable to any rewrite theory R that satisfies
the requirements for rewriting with SMT [47], briefly explained in Sect. 2.

5 Parameter Synthesis and Symbolic Model Checking

This section shows how Maude-SE can be used for solving parameter synthesis
problems, model checking the non-nested timed temporal logic properties sup-
ported by Roméo (in addition to LTL model checking), reasoning with parametric
initial states, and analyzing nets with user-defined execution strategies.

5.1 Parameter Synthesis

A state predicate is a boolean expression on markings (e.g., k-safe(1,m)) and
clocks (e.g., c1 < c2). EF-synthesis (resp. safety synthesis (AG¬φ)) is the problem
of computing parameter values π such that some (resp. no) run of π(N ) reaches
a state satisfying a given state predicate φ.

search in RfS
1 provides semi-decision procedures for solving these parameter

synthesis problems (which are undecidable in general). As illustrated below, the
resulting constraint computed by search can be used to synthesize the parameter
values that allow such behaviors. The safety synthesis problem AG¬φ can be
solved by finding all solutions for EFφ and negating the resulting constraint.

Example 4. The following command solves the EF-synthesis problem of finding
values for a in Fig. 2 such that the net is not 1-safe, where φ = 0 ≤ a:

search [1] init(net, m0, φ) =>* S : PHI’ ‖ ( TICK : M : CLOCKS : NET )
such that smtCheck(PHI’ and not k-safe(1,M)) .

It returns one solution, and the resulting constraint φ′, instantiating the pattern
PHI’, can be used to extract the parameter values as follows. Let X be the set
of SMT variables in φ′ not representing parameters. A call to the quantifier
elimination procedure (qe) of the SMT solver Z3 on the formula ∃X.φ′ reduces
to a:Real >= 4/1, giving us the desired values for the parameter a.

To solve the safety synthesis problem AG¬φ, we have used Maude’s meta-
programming facilities [18] to implement a command safety-syn(net,m0,φ0,φ)
where m0 is a marking, φ0 a constraint on the parameters and φ a constraint
involving the variables M and CLOCKS as in the search command in Example 4.
This command iteratively calls search to find a state reachable from m0, with
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initial constraint φ0, where φ does not hold. If such state is found, with accumu-
lated constraint φ′, the search command is invoked again with initial constraint
φ0 ∧ ¬φ′. This process stops when no more reachable states where φ does not
hold are found, thus solving the AG¬φ synthesis problem.

Example 5. The following command synthesizes the values of the parameter a,
so that 30 ≤ a ≤ 70, that make the scheduling system in [6,50] 1-safe:

safety-syn(net, m0, a:Real >= 30/1 and a:Real <= 70/1, k-safe(1,M)) .

The first counterexample found assumes that a ≤ 48. If a > 48, search does not
find any counterexample. This is the same answer that Roméo found.

Since we can have Integer variables in initial markings, we can use Maude-
SE to synthesize the initial markings that, e.g., make the net k-safe or alive:

Example 6. Consider a parametric initial marking ms for the net in Fig. 1,
with parameters x1, x2, and x3 denoting the number of tokens in places p1,
p2, and p3, respectively, and the initial constraint φ0 stating that a ≥ 0
and 0 ≤ xi ≤ 1. The execution of the command execution of the com-
mandsafety-syn(net,ms, φ0, k-safe(1,M)) determines that the net is 1-safe
when x1 = x3 = 0 and 0 ≤ x2 ≤ 1.

Analysis with Strategies. Maude’s strategy facilities [17] allow us to analyze
PITPNs whose executions follow some user-defined strategy:

Example 7. We execute the net in Fig. 1 with the following strategy t3-first:
whenever transition t3 and some other transition are enabled at the same time,
then t3 fires first. The following strategy definition (sd) specifies this strategy:

sd t3-first := ( applyTransition[ L <- "t3" ] or-else all )!

Running srew init(net, m0, a ≥ 0) using t3-first in RfS
1 finds all symbolic

states reachable with this strategy, and all of them are 1-safe. Therefore, all param-
eter values a ≥ 0 guarantee the desired property with this execution strategy.

5.2 Analyzing Temporal Properties

This section shows how Maude-SE can be used to analyze the temporal proper-
ties supported by Roméo [29], albeit in a few cases without parametric bounds
in the temporal formulas. Roméo can analyze the following temporal properties:

QφUJ ψ | QFJ φ | QGJ φ | φ �≤b ψ

where Q ∈ {∃,∀}, φ and ψ are state predicates on markings, and J is a time
interval [a, b], where a and/or b can be parameters and b can be ∞. For example,
∀F[a,b] φ says that in each path from the initial state, a marking satisfying φ is
reachable in some time in [a, b]. The bounded response φ �≤b ψ says that each
φ-marking must be followed by a ψ-marking within time b.

Since queries include time bounds, we use RfS
2 , and init(net,m0, φ) will

denote the term empty : φ ‖ tickOk : m0 : initClocks(net) : net @ 0/1.
State predicates, including inequalities on markings and clocks, and also a

test whether the global clock is in a given interval are defined as follows:
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ops _>=_ _>_ _<_ _<=_ _==_ : Place Integer -> Prop .
ops _>=_ _>_ _<_ _<=_ _==_ : Clock Real -> Prop .
op in-time : Interval -> Prop .
eq S : C || (TICK : M ; (P |-> N1) : CLOCKS : NET) @ G-CLOCK |= P >= N1’
= smtCheck(C and N1 >= N1’ ) . --- similarly for >, <=, < and ==

eq S : C || (TICK : M : CLOCKS : NET) @ G-CLOCK |= in-time INTERVAL
= smtCheck(C and (G-CLOCK in INTERVAL )) .

Atomic propositions (Prop) are evaluated (|=) on symbolic states represented as
constrained terms S : φ ‖ t. Since they may contain variables, a call to the SMT
solver (smtCheck) is needed to determine whether φ entails the proposition.

Some of the temporal formulas supported by Roméo can be easily verified
using the reachability commands presented in the previous section. The property
∃F[a,b] ψ can be verified using the command:

search [1] init(net, m0, φ) =>* S : PHI’ ‖ TICK : M : CLOCKS : NET @ G-CLOCK
such that (STATE ′ |= ψ) and G-CLOCK in [a : b] .

where φ states that all parameters are non-negative numbers and STATE ′ is the
expression to the right of =>*. a and b can be variables representing parameters
to be synthesized; and ψ can be an expression involving CLOCKS. For example,

search [1] init(net, m0, φ) =>*
S’ : PHI’ ‖ TICK : (M ; "p1" |-> P1) : (CLOCKS ; "t2" -> C2) : NET @ G-CLOCK
such that (STATE ′ |= P1 > 1 /\ C2 < 2/1) and G-CLOCK in [a : b] .

checks whether it is possible to reach a marking, in some time in [a, b], with more
than one token in place p1, when the value of the clock of transition t2 is < 2.

The dual property ∀G[a,b] φ can be checked by analyzing ∃F[a,b] ¬φ.

Example 8. Consider the PITPN in Example 5 with (interval) parameter φ =
30 ≤ a ≤ 70. The property ∃F[b,b](¬1 -safe) can be verified with the following
command, which determines that the parameter b satisfies 60 ≤ b ≤ 96.

search [1] init(net, m0, φ) =>* S : PHI’ ‖ TICK : M : CLOCKS : NET @ G-CLOCK
such that STATE ′ |= b:Real >= 0/1 and (G-CLOCK in [b:Real : b:Real])

and not (k-safe(1,M)) .

φ �≤b ψ can be verified using a simple theory transformation on RS
0 followed

by reachability analysis. The theory transformation adds a new “clock,” which
is either noClock or clock(τ), to the state. The latter represents the time
(τ) since a φ-state was visited without having been followed by a ψ-state. The
applyTransition rule is modified as follows: when the clock is noClock and
the new marking satisfies φ ∧ ¬ψ, this clock is set to clock(0), and when a ψ-
marking is reached, the clock is set to noClock. The tick rule updates clock(T1)
to clock(T1 + T) and leaves noClock unchanged. φ �≤b ψ can be checked by
searching for a “bad” state with “clock” clock(T) where T > b. See [6] for details.

Reachability analysis cannot be used to analyze the other properties sup-
ported by Roméo (QφUJ ψ, and ∀FJ φ and its dual ∃GJ φ). We combine Maude’s
explicit-state model checker and SMT solving to solve these (and other) queries.

The timed temporal operators can be defined on top of the (untimed) LTL
temporal operators in Maude (<>, [] and U) :
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ops <_>_ [_]_ : Interval Prop -> Formula . --- FJφ and GJφ
op _U__ : Prop Interval Prop -> Formula . --- φUjψ
eq < INTERVAL > PR1 = <> (PR1 /\ in-time INTERVAL) .
eq [ INTERVAL ] PR1 = ~ (< INTERVAL > (~ PR1)) .
eq PR1 U INTERVAL PR2 = PR1 U (PR2 /\ in-time INTERVAL) .

For this fragment of non-nested timed temporal logic formulas, universally
quantified properties can be model checked directly by Maude; for ∃Φ it is enough
to model check ¬Φ: any counterexample to this is a witness for ∃Φ, and vice versa.

6 Benchmarking

We have compared the performance of Maude-with-SMT analysis with that of
Roméo on three case studies: the producer-consumer [52] system in Fig. 1, the
scheduling system in [50], and the tutorial system taken from the Roméo
website. We modified tutorial to produce two tokens in the loop-back, which
leads to infinite behaviors. We compared the performance of solving the synthesis
problem EF(p > n) (place p holds more than n tokens), for different p and
n, and of checking whether the net is 1-safe. In each experiment, Maude was
executed with two different SMT solvers: Yices and Z3. The benchmarking data
are available in the repository [5] and in the technical report [6].

The results show that using Maude with Yices is faster than using it with
Z3. For negative queries, as expected, RS

0 and RS
1 time out (set to 10minutes),

while RfS
1 (which uses folding) completes the analysis before the timeout.

Maude-SE outperforms Roméo in some reachability queries, and sometimes
our analysis terminates when Roméo does not, which may happen when the search
order leads Roméo to explore an infinite branch with an unbounded marking.

7 Related Work

Tool Support for Parametric Time Petri Nets. We are not aware of any tool for
analyzing parametric time(d) Petri nets other than Roméo [29].

Petri Nets in Rewriting Logic. Formalizing Petri nets algebraically [34] partly
inspired rewriting logic. Different kinds of Petri nets are given a rewriting logic
semantics in [48], and in [40] for timed nets. In contrast to our paper, these papers
focus on the semantics of such nets, and do not consider execution and analysis
(or inhibitor arcs or parameters). Capra [14,15], Padberg and Schultz [45], and
Barbosa et al. [12] use Maude to formalize dynamically reconfigurable Petri
nets and I/O Petri nets. In contrast to our work, these papers target untimed
and non-parametric nets, and do not focus on formal analysis, but only show
examples of standard (explicit-state) search and LTL model checking.

Symbolic Methods for Real-Time Systems in Maude. We develop symbolic anal-
ysis methods for parametric time automata (PTA) in [4]. The differences with
the current paper include: PTAs are very simple structures compared to PITPNs
(with inhibitor arcs, no bounds on the number of tokens in a state), so the
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semantics of PITPNs is more sophisticated than the one for PTAs, which does
not use “structured” states, equations, or user-defined functions; defining a new
rewrite theory for each PTA in [4] compared to having a single rewrite the-
ory for all nets in this work; obtaining desired symbolic reachability properties
using “standard” folding methods for PTAs compared to having to develop a new
folding mechanism for PITPNs; analysis in [4] does not include temporal logic
model checking; and so on. In addition, a number of real-time systems have been
formally analyzed using rewriting with SMT, including PLC ST programs [26],
virtually synchronous cyber-physical systems [23–25], and soft agents [35]. These
papers differ from our work in that they use guarded terms [10,11] for state-space
reduction instead of folding, and do not consider parameter synthesis problems.

8 Concluding Remarks

We have provided a “concrete” rewriting logic semantics for PITPNs, and proved
that this semantics is bisimilar to the semantics of such nets in [49]. We then
systematically transformed this non-executable “Real-Time Maude-style” model
into a “symbolic” rewrite model which is amenable to sound and complete sym-
bolic analysis for dense-time systems using Maude combined with SMT solving.

We have shown how almost all analysis and parameter synthesis supported by
the PITPN tool Roméo can be done using Maude-with-SMT. We have also shown
how Maude-with-SMT can provide additional capabilities for PITPNs, including
synthesizing initial markings (and not just firing bounds) from parametric initial
markings so that desired properties are satisfied, full LTL model checking, and
analysis with user-defined execution strategies. We developed a new “folding”
method for symbolic states, so that symbolic reachability analysis using Maude-
with-SMT terminates whenever the corresponding Roméo analysis terminates.

Our benchmarking shows that our symbolic methods using Maude combined
with the SMT solver Yices in some cases outperforms Roméo, whereas Maude
with Z3 is significantly slower.

This paper has not only provided new features for PITPNs. It has also shown
that even a model like our Real-Time Maude-inspired PITPN interpreter—with
functions, equations, and unbounded markings—can easily be turned into a sym-
bolic rewrite theory for which Maude-with-SMT provides very useful sound and
complete analyses even for dense-time systems.
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