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Abstract
This paper presents a rewriting logic semantics for paramet-
ric timed automata (PTAs) and shows that symbolic reacha-
bility analysis usingMaude-with-SMT is sound and complete
for the PTA reachability problem. We then refine standard
Maude-with-SMT reachability analysis so that the analysis
terminates when the symbolic state space of the PTA is fi-
nite. We show how we can synthesize parameters with our
methods, and compare their performance with Imitator, a
state-of-the-art tool for PTAs. The practical contributions
are two-fold: providing new analysis methods for PTAs—e.g.
allowing more general state properties in queries and sup-
porting reachability analysis combined with user-defined
execution strategies—not supported by Imitator, and develop-
ing symbolic analysis methods for real-time rewrite theories.

CCS Concepts: • Theory of computation→ Timed and
hybrid models; Rewrite systems.

Keywords: Timed automata, rewriting logic, symbolic anal-
ysis, parameter synthesis
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1 Introduction
Many, if not most, safety-critical computer systems, e.g. in
robotics, microelectronics circuits, avionics, and automo-
tive and aerospace systems, are time-critical systems whose
correctness depends on time and on the correct values of
their parameters. Timed automata [2] are a popular formal-
ism for modeling real-time systems, and the timed automa-
ton tool Uppaal [23] has been applied to a wide range of
safety-critical applications, including automotive [30, 35],
airborne [19], and fire fighting [53] systems.
Parametric timed automata (PTA) [3] extend timed au-

tomata to the case where the values of some system parame-
ters are unknown. The formal modeling, parameter synthe-
sis, and analysis of PTAs are supported by the state-of-the-
art Imitator tool [5], which has been applied to a number
of systems, including protocols [27–29], an asynchronous
circuit commercialized by ST-Microelectronics [18], and a
distributed architecture for the flight control system of space-
craft designed at ASTRIUM Space Transportation [25].
Timed automata are nevertheless a somewhat restricted

formalism—to ensure that key properties are decidable—that
does not support well features like unbounded data struc-
tures, user-defined data types, different forms of communi-
cations, dynamic object creation and deletion, and so on.

Rewriting logic [37] and its associated tool Maude [22] are
on the other side of the expressiveness spectrum, and sup-
port the above features. The Real-Time Maude tool [48, 49]
extends Maude to real-time systems and has been used to
analyze a wide range of systems where the above features are
needed. Such applications include state-of-the-art 50-page
multicast and IETF protocols [33, 50], scheduling protocols
with unbounded queues [45], state-of-the-art wireless sen-
sor network protocols [51], MANET protocols [36], turn-
ing control algorithms for aircraft [11], human multitask-
ing [17], large cloud-based transaction systems [16, 26], and
so on (see [43] for a dated overview). In particular, thanks
to its expressiveness, Real-Time Maude has been applied
as a semantic framework and formal analysis backend in
which a number of modeling languages, such as (subsets
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of) Ptolemy II [13], AADL [44], a language developed at
DOCOMO Labs [1], and others have been given a formal
semantics and formal analysis capabilities [42].

However, Real-Time Maude only supports concrete execu-
tion of real-time systems, where time advances by a concrete
value in each step. Many behaviors (those where time ad-
vances by other values) are therefore not analyzed in dense-
time systems, and hence Real-Time Maude analysis is in
general unsound [47]. One way to provide sound and com-
plete formal analysis for real-time systems in (Real-Time)
Maude is to perform symbolic execution that has recently
been enabled by combining rewriting logic with SMT solv-
ing [52], and implemented in the Maude-SE tool [54].
In this paper we define a rewriting logic semantics for

PTAs by mapping a PTA A into a rewriting logic theory
[[A]], and showing thatA and [[A]] are bisimilar (Section 3).
More importantly, we show in Section 4 that symbolic exe-
cution with Maude-with-SMT gives us sound and complete
reachability analysis methods for [[A]]. However, straight-
forward Maude-with-SMT execution of [[A]] generates a
new SMT variable whenever time advances, which leads to
nontermination when the desired states are unreachable. We
therefore show in Section 4 that “folding” symbolic states
solves this problem, and implement a reachability analysis
command for Maude-with-SMT that terminates whenever
the parametric zone graph of the PTA is finite.
Section 5 shows how we can synthesize parameters that

guarantee that a desired reachability property is satisfied. We
also show how we can combine our methods and Maude’s
strategy language to perform symbolic reachability analysis
when the PTA execution follows a user-defined strategy.

In Section 6 we compare the performance of Imitator,
“standard” Maude-with-SMT reachability analysis, and our
new reachability command on a number of PTAs taken from
the PTA benchmark library [7].
The contributions of this work are the following. First,

it provides new analysis methods for PTA that are not pro-
vided by Imitator. For example, we can analyze PTAs that
behave according to a certain execution strategy, defined
using Maude’s strategy language, and we illustrate in this
paper that this can be useful for PTAs. Our approach also
allows us to tackle properties that Imitator cannot handle, by
permitting state properties not only on the locations but also
on the values of clocks and parameters. Second, Maude pro-
vides meta-programming facilities that allow us to quickly
implement and prototype new analysis methods for PTAs,
instead of having to hardcode them in a tool. Third, Maude
provides full (explicit-state) LTL and LTLR model checking,
and Real-Time Maude provides timed CTL model check-
ing [32]; when these methods are extended to the symbolic
case, we would get full (timed and untimed) temporal logic
checking for PTA, which is not provided by either Imitator
or Uppaal. Fourth, and maybe most important, this work
is the first step investigating how real-time systems can be

efficiently symbolically analyzed using Maude-with-SMT,
with the goal of providing sound and complete symbolic
analysis methods for (Real-Time) Maude. This would also
automatically equip a number of modeling languages with
such sound and complete formal analysis methods.
The proofs of all results can be found in the technical re-

port [9]. The companion repository of this paper [8] contains
the rewrite theories, examples, and benchmarks presented
here, as well as a tool for translating Imitator files intoMaude.

2 Preliminaries
This section gives background to bisimulations [20], paramet-
ric timed automata [3], rewriting logic [37], rewriting mod-
ulo SMT [52], and Maude [22] and its strategy language [21].

Transition Systems and Bisimulations. A transition
system A is a triple (𝐴, 𝑎0,→A), where 𝐴 is a set of states,
𝑎0 ∈ 𝐴 is the initial state, and →A ⊆ 𝐴 × 𝐴 is a transition
relation. A function ℎ : 𝐴 → 𝐵 is a bisimulation from A to
B iff: (i) ℎ(𝑎0) = 𝑏0; and (ii) for each 𝑎 ∈ 𝐴, if 𝑎 →A 𝑎′ then
ℎ(𝑎) →B ℎ(𝑎′), and if ℎ(𝑎) →B 𝑏 then there exists 𝑎′′ ∈ 𝐴

with 𝑎 →A 𝑎′′ and ℎ(𝑎′′) = 𝑏.

Parametric Timed Automata (PTA). Let 𝑋 be a set of
real-valued clocks (e.g. 𝑥,𝑦) and 𝑃 a set of rational-valued
parameters (e.g. 𝑝, 𝑞). A linear term over parameters (plt) is
an expression (∑𝑖 𝛼𝑖𝑝𝑖 ) + 𝛽 , where 𝑝𝑖 ∈ 𝑃 and 𝛼𝑖 , 𝛽 ∈ Q. A
(diagonal) inequality has the form 𝑥1 − 𝑥2 ⊲⊳ plt, with 𝑥𝑖 ∈
𝑋 ∪ {0} and ⊲⊳ ∈ {<, ≤,=, ≥, >}. Examples are 𝑥 −𝑦 ≤ 2𝑝 +𝑞,
𝑥 > 𝑞 − 1 and 2 ≤ 𝑝 . A (convex) constraint (or zone) is a
conjunction of inequalities. We write C for the set of zones.
A parametric timed automaton (PTA) A is a tuple A =

(Σ, 𝐿, ℓ0, 𝑋, 𝑃, 𝐼 , 𝐸), where Σ is a finite set of actions, 𝐿 is a
finite set of locations, ℓ0 ∈ 𝐿 is the initial location, 𝑋 is a set
of clocks, and 𝑃 is a set of parameters. 𝐼 : 𝐿 → C denotes an
invariant for each location and 𝐸 is a set of transitions of the
form (ℓ, 𝑔, 𝜎, 𝑅, ℓ ′), with source ℓ ∈ 𝐿, target ℓ ′ ∈ 𝐿, guard
𝑔 ∈ C, action 𝜎 ∈ Σ, and clock reset 𝑅 ⊆ 𝑋 .

A parameter valuation is a function 𝑣 : 𝑃 → Q≥0 and a
clock valuation is a function 𝑤 : 𝑋 → R≥0. For 𝑑 ∈ R≥0
the clock valuation𝑤 + 𝑑 is defined (𝑤 + 𝑑) (𝑥) := 𝑤 (𝑥) + 𝑑 .
For a clock reset 𝑅 ⊆ 𝑋 the clock valuation𝑤 [𝑅] is defined
𝑤 [𝑅] (𝑥) := 0 if 𝑥 ∈ 𝑅 and𝑤 (𝑥) otherwise. We write ®0 for the
clock valuation s.t. ∀𝑥 ∈ 𝑋 : ®0(𝑥) = 0. We extend parameter
valuations to linear terms. We write 𝑣,𝑤 |= (𝑥𝑖 − 𝑥 𝑗 ⊲⊳ plt)
iff𝑤 (𝑥𝑖 ) −𝑤 (𝑥 𝑗 ) ⊲⊳ 𝑣 (plt), and 𝑣,𝑤 |= 𝑍 iff 𝑣,𝑤 |= 𝑒 for each
inequality 𝑒 in the zone 𝑍 .
Given a parameter valuation 𝑣 , we write 𝑣 (A) for the

timed automaton (TA) obtained by replacing each parameter
𝑝 in invariants and guards by 𝑣 (𝑝). The concrete semantics
of a PTA A is derived from that of the TA 𝑣 (A), and is
defined as a timed transition system with states (ℓ,𝑤), ini-
tial state (ℓ0, ®0) (we assume that ®0 |= 𝐼 (ℓ0)), and transitions
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Figure 1. A coffee machine (CM) modeled as a PTA.

−→ =
𝑑−→ ;

𝑒−→, where continuous time delay (
𝑑−→) and discrete

transitions (
𝑒−→) are defined as follows:

• If 𝑑 ∈ R≥0 and𝑤 + 𝑑 |= 𝐼 (ℓ), then (ℓ,𝑤) 𝑑−→ (ℓ,𝑤 + 𝑑).
• If 𝑒 = (ℓ, 𝑔, 𝜎, 𝑅, ℓ ′) ∈ 𝐸 and 𝑤 |= 𝑔 and 𝑤 [𝑅] |= 𝐼 (ℓ ′)
then (ℓ,𝑤) 𝑒−→ (ℓ ′,𝑤 [𝑅]).

Example 2.1. The PTA in Fig. 1—with 4 locations, 2 clocks
(𝑥1 and 𝑥2) and 3 parameters (𝑝1, 𝑝2, 𝑝3)—models a simple
coffee machine. Invariants are displayed inside dotted boxes.
The machine can initially be idle for an arbitrarily long

time. Then, whenever the user presses the button bStart, the
PTA enters location add_sugar, resetting both clocks. The
machine can remain in this location as long as the invariant
(𝑥2 ≤ 𝑝2) is satisfied; there, the user can add a dose of sugar by
pressing the button bSugar , provided the guard (𝑥1 ≥ 𝑝1) is
satisfied, which resets 𝑥1. Then, 𝑝2 time units after the bStart
button was last pushed, a cup is delivered (action cup), and
the coffee is being prepared; 𝑝3 time units after the last bStart
button push, the coffee (action coffee) is delivered. After 10
time units, the machine returns to the idle mode—unless a
user again requests coffee by pushing bStart.

The parametric zone graph (PZG) provides a symbolic se-
mantics for a PTA. A single PZG treats all parameter valua-
tions symbolically. Although the PZG avoids the uncount-
ably infinite timed transition system, it may be (countably)
infinite. We define the following operations on zones:
Time elapse: 𝑍↗ def

= {(𝑣,𝑤 + 𝑑) | 𝑑 ∈ R≥0 ∧ 𝑣,𝑤 |= 𝑍 }

Clock reset: 𝑍 [𝑅] def
= {(𝑣,𝑤 [𝑅]) | 𝑣,𝑤 |= 𝑍 }

The PZG is a transition system where each abstract state
consists of a location and a non-empty zone. The PZG of
A = (Σ, 𝐿, ℓ0, 𝑋, 𝑃, 𝐼 , 𝐸) is (𝑆, 𝑠0,⇒), with 𝑆 ⊆ 𝐿 × C, initial
state 𝑠0 = (ℓ0, (

∧
𝑥∈𝑋 𝑥 = 0)↗ ∩ 𝐼 (ℓ0)). A transition step

(ℓ, 𝑍 ) ⇒ (ℓ ′, 𝑍 ′) exists if for some (ℓ, 𝑔, 𝜎, 𝑅, ℓ ′) ∈ 𝐸 we have
𝑍 ′ = ((𝑍 ∩𝑔) [𝑅] ∩ 𝐼 (ℓ ′))↗ ∩ 𝐼 (ℓ ′) ≠ ∅. We write⇒∗ for the
reflexive-transitive closure of⇒.

Example 2.2. Figure 2 presents the beginning of the para-
metric zone graph of the coffee machine in Example 2.1.

Rewrite Theories. An order-sorted signature Σ is a triple
(𝑆, ≤, 𝐹 ) with 𝑆 a set of sorts, ≤ a partial order on 𝑆 , and 𝐹 a
set of function symbol declarations 𝑓 : 𝑠1 × · · · × 𝑠𝑛 → 𝑠 , for
𝑛 ≥ 0. We denote by𝑇Σ,𝑠 the set of ground (i.e. not containing
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Figure 2. The PZG of the coffee machine example CM .

variables) Σ-terms of sort 𝑠 , and by𝑇Σ (𝑋 )𝑠 the set of Σ-terms
of sort 𝑠 over a set𝑋 of sorted variables.𝑇Σ (𝑋 ) and𝑇Σ denote
all terms and ground terms, respectively.
A substitution 𝜃 : 𝑋 → 𝑇Σ (𝑋 ) maps each variable to

a term of the same sort. 𝑡𝜃 denotes the term obtained by
simultaneously replacing each variable 𝑥 in 𝑡 with 𝜃 (𝑥).
An order-sorted equational theory is a pair E = (Σ, 𝐸),

where Σ is an order-sorted signature and 𝐸 is a set of (condi-
tional) equations of the form 𝑡 = 𝑡 ′ if 𝜓 , where 𝑡, 𝑡 ′ ∈ 𝑇Σ (𝑋 )𝑠
for some sort 𝑠 ∈ Σ and𝜓 is a conjunction of equations. We
write 𝑢 =𝐸 𝑢′ iff (Σ, 𝐸) ⊢ (∀𝑋 ) 𝑢 = 𝑢′ [38].

A rewrite theory [37] is a tuple R = (Σ, 𝐸, 𝐿, 𝑅), where
(Σ, 𝐸) is an equational theory, 𝐿 is a set of labels, and 𝑅

is a set of labeled (conditional) rewrite rules of the form
𝑙 : 𝑞 −→ 𝑟 if 𝜓 , where 𝑙 ∈ 𝐿, 𝑞, 𝑟 ∈ 𝑇Σ (𝑋 )𝑠 for some sort
𝑠 ∈ Σ, and𝜓 is a conjunction of equations and rewrites.

𝑡 −→R 𝑡 ′ is a (one-step) rewrite if there is a rule 𝑙 : 𝑞 −→
𝑟 if 𝜓 , a subterm𝑢 of 𝑡 , and a substitution 𝜃 such that𝑢 =𝐸 𝑞𝜃

and 𝑡 ′ is obtained from 𝑡 by replacing the subterm 𝑢 with 𝑟𝜃 ,
provided 𝑣𝜃 = 𝑣 ′𝜃 holds for each equation 𝑣 = 𝑣 ′ in 𝜓 . We
denote by −→∗

R the reflexive-transitive closure of −→R .
A rewrite theory R is called topmost iff there is a sort State

at the top of one of the connected components of the poset
(𝑆, ≤) such that for each rule 𝑙 : 𝑞 −→ 𝑟 if 𝜓 , both 𝑞 and 𝑟
have the top sort State, and no operator has sort State or any
of its subsorts as an argument sort.

Rewriting with SMT. A built-in theory E0 of (Σ, 𝐸) is a
first-order theory with a signature Σ0 ⊆ Σ, where each sort
𝑠 in Σ0 is minimal in Σ and for each operator 𝑓 : 𝑤 −→ 𝑠 in
Σ \ Σ0, 𝑠 ∉ Σ0 and 𝑓 has no other subsort-overloaded typing
in Σ0. Satisfiability of a constraint in E0 is assumed to be
decidable using the SMT theory TE0 which is consistent with
(Σ, 𝐸): for 𝑡1, 𝑡2 ∈ 𝑇Σ0 , if 𝑡1 =𝐸 𝑡2, then TE0 |= 𝑡1 = 𝑡2 [52].
A constrained term is a pair 𝜙 ∥ 𝑡 of a constraint 𝜙 in E0

and a term 𝑡 ∈ 𝑇Σ (𝑋0) over variables 𝑋0 ⊆ 𝑋 of the built-in
sorts in E0 [14, 52]. A constrained term 𝜙 ∥ 𝑡 symbolically
represents all instances of the pattern 𝑡 such that 𝜙 holds:
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J𝜙 ∥ 𝑡K = {𝑡 ′ | 𝑡 ′ =𝐸 𝑡𝜃 and TE0 |= 𝜙𝜃 for ground 𝜃 : 𝑋0 −→ 𝑇Σ0 }.
A symbolic rewrite on constrained terms symbolically rep-

resents a (possibly infinite) set of system transitions. Let R
be a topmost theory such that for each rule 𝑙 : 𝑞 −→ 𝑟 if 𝜓 ,
extra variables not occurring in the left-hand side 𝑞 are in𝑋0,
and𝜓 is a constraint in a built-in theory E0. Then, a one-step
symbolic rewrite 𝜙 ∥ 𝑡 ⇝R 𝜙 ′ ∥ 𝑡 ′ holds iff there exist a rule
𝑙 : 𝑞 −→ 𝑟 if 𝜓 and a substitution 𝜃 : 𝑋 −→ 𝑇Σ (𝑋0) such that
(1) 𝑡 =𝐸 𝑞𝜃 , (2) 𝑡 ′ =𝐸 𝑟𝜃 , (3) TE0 |= (𝜙 ∧𝜓𝜃 ) ⇔ 𝜙 ′, and (4) 𝜙 ′

is TE0-satisfiable. We denote by⇝∗
R the reflexive-transitive

closure of⇝R .
If 𝜙𝑡 ∥ 𝑡 ⇝∗ 𝜙𝑢 ∥ 𝑢 is a symbolic rewrite, then there

exists a “concrete” rewrite 𝑡 ′ −→∗ 𝑢′ with 𝑡 ′ ∈ J𝜙𝑡 ∥ 𝑡K
and 𝑢′ ∈ J𝜙𝑢 ∥ 𝑢K. Conversely, for any concrete rewrite
𝑡 ′ −→∗ 𝑢′ with 𝑡 ′ ∈ J𝜙𝑡 ∥ 𝑡K, there exists a symbolic rewrite
𝜙𝑡 ∥ 𝑡 ⇝∗ 𝜙𝑢 ∥ 𝑢 with 𝑢′ ∈ J𝜙𝑢 ∥ 𝑢K.

Maude. Maude [22] is a language and tool supporting the
specification and analysis of rewrite theories. We use Maude
to specify rewrite theories, and summarize its syntax below:

mod M is ... endm --- Rewrite theory M
pr R . --- Importing a theory R
sorts S ... Sk . --- Declaration of sorts S1,..., Sk
subsort S1 < S2 . --- Subsort relation
vars X1 ... Xm : S . --- Logical variables of sort S
op f : S1 ... Sn -> S . --- Operator S1 x ... x Sn -> S
op c : -> T . --- Constant c of sort T
ceq t = t' if c . --- Conditional equation
crl [l] : q => r if c . --- Conditional rewrite rule

Maude provides a number of analysis methods, including
computing the normal form (“value”) of an expression (com-
mand red), simulation by rewriting, and explicit-state reach-
ability analysis and LTL model checking. The command

smt-search [𝑛,𝑚] : 𝑡 =>* 𝑡 ′ such that Φ .

symbolically searches for 𝑛 states, reachable from 𝑡 ∈ 𝑇Σ (𝑋0)
within𝑚 steps, that match the pattern 𝑡 ′ ∈ 𝑇Σ (𝑋 ) and sat-
isfy the constraint Φ in E0. More precisely, it searches for a
constrained term 𝜙𝑢 ∥ 𝑢 such that true ∥ 𝑡 ⇝∗ 𝜙𝑢 ∥ 𝑢 and
for some 𝜃 : 𝑋 −→ 𝑇Σ (𝑋 ), 𝑢 =𝐸 𝑡 ′𝜃 and TE0 |= 𝜙𝑢 ⇒ Φ𝜃 . The
parameters𝑚 and 𝑛 are optional.

Maude provides built-in sorts Boolean, Integer, and Real
for the SMT theories of Booleans, integers, and reals. Rational
constants of sort Real are written 𝑛/𝑚 (e.g., 0/1).

Maude supports meta-programming, where a Maude mod-
ule𝑀 (resp. a term 𝑡 ) can be (meta-)represented as a Maude
term𝑀 of sort Module (resp. as a Maude term 𝑡 of sort Term)
in Maude’s META-LEVELmodule. Sophisticated analysis com-
mands and model/module transformations can then be easily
defined as ordinary Maude functions on such (meta-)terms.
For this purpose, Maude provides built-in functions such as
metaReduce, metaRewrite, metaMatch, and metaCheck.

Maude-SE [54] extends Maude with additional functional-
ity for rewriting modulo SMT, including witness generation
for smt-search. It uses two theory transformations to im-
plement symbolic rewriting [52]. In essence, a rewrite rule

𝑙 : 𝑞 −→ 𝑟 if 𝜓 is transformed into a constrained-term rule

𝑙 : PHI ∥ 𝑞 −→ (PHI 𝑎𝑛𝑑 𝜓 ) ∥ 𝑟 if smtCheck(PHI 𝑎𝑛𝑑 𝜓 )

where PHI is a Boolean variable, and smtCheck invokes the
underlying SMT solver to check the satisfiability of an SMT
condition. This rule is executable if the extra SMT variables
in (var (𝑟 ) ∪ var (𝜓 )) \ var (𝑞) are considered constants.

Strategy Language. Maude’s strategy language [21] al-
lows us to define strategies for applying the rewrite rules.
The command srew 𝑡 using 𝑠𝑡𝑟 rewrites the term 𝑡 ac-
cording to the strategy 𝑠𝑡𝑟 and returns all its results. Basic
strategies include the application of a rule 𝑙 once anywhere
in the term (strategy 𝑙 , and top(𝑙) for rewriting at the top of
term using rule 𝑙 ; all denotes all rules), idle (identity), fail
(empty set), and match 𝑃 s.t. 𝐶 , which checks whether the
current term matches the pattern 𝑃 subject to the (optional)
condition𝐶 . Compound strategies can then be defined using
constructs such as: concatenation (𝛼 ; 𝛽), disjunction (𝛼 | 𝛽),
iteration (𝛼∗), and 𝛼 or-else 𝛽 , which executes 𝛽 if 𝛼 fails.

3 A Rewriting Logic Semantics for PTA
This section presents a rewriting logic semantics for PTA by
defining in Section 3.1 a theory transformation [[_]] mapping
a PTA A into a rewrite theory [[A]]. Section 3.2 provides a
bisimulation result relating the concrete semantics of A and
a rewrite relation induced by [[A]].

3.1 The PTA to Rewrite Theory Transformation
WefixA to be the PTA (Σ, 𝐿, ℓ0, 𝑋, 𝑃, 𝐼 , 𝐸) with𝑛 = |𝑋 | clocks
(𝑥1, . . . , 𝑥𝑛), 𝑚 = |𝑃 | parameters (𝑝1, . . . , 𝑝𝑚), and 𝑘 = |𝐿 |
locations {ℓ1, · · · , ℓ𝑘 }. The idea is to represent a concrete
state (ℓ,𝑤) of the PTA A as a Maude term

[ ℓ : 𝑤 (𝑥𝑖 ) ; . . . ; 𝑤 (𝑥𝑛 ) ] < P1 ; . . . ; P𝑚 >

where the P𝑖 are variables. A state (ℓ,𝑤) in the TA 𝑣 (A)
(i.e. the PTA A whose parameters are instantiated with the
parameter valuation 𝑣) then has the form

[ ℓ : 𝑤 (𝑥𝑖 ) ; . . . ; 𝑤 (𝑥𝑛 ) ] < 𝑣 (𝑝1 ) ; . . . ; 𝑣 (𝑝𝑚 ) >.

To avoid consecutive steps that advance time, which can
be combined into one such step, we use "delayed" states

< ℓ : 𝑤 (𝑥𝑖 ) ; . . . ; 𝑤 (𝑥𝑛 ) > < P1 ; . . . ; P𝑚 >

where time cannot advance any further.
Each transition in A is modeled by a rewrite rule. For

example, in the coffeemachine in Fig. 1, the transition bSugar
is modeled by the rewrite rule

crl [add_sugar-bSugar] :
< add_sugar : X1 ; X2 > < P1 ; P2 ; P3 > =>
[ add_sugar : 0/1 ; X2 ] < P1 ; P2 ; P3 >
if (X1 >= P1 and X2 <= P2) = true .

Furthermore, for each location ℓ ∈ 𝐿, we add a “tick” rewrite
rule that advances the time in all clocks, modeling “idling”
in that location. The tick rule for, e.g., location add_sugar is

6
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crl [add_sugar-tick] :
[ add_sugar : X1 ; X2 ] < P1 ; P2 ; P3 > =>
< add_sugar : X1 + T ; X2 + T > < P1 ; P2 ; P3 >
if (X2 + T <= P2 and T >= 0/1) = true [nonexec] .

Since time can advance by any amount𝑇 where 𝑥2 +𝑇 ≤ 𝑝2,
this time increase is modeled by introducing a new variable
T in the right-hand side of the rule, thus making this rule
not directly executable in Maude ([nonexec], see Section 4).

The rewrite theory [[A]] defines the sorts Location and
State, with subsorts NState ("Non-delayed state") and DState
("delayed state"), as follows:

pr REAL . --- SMT rational/real numbers
sorts State NState DState Location . --- Sorts for states
subsorts NState DState < State .
--- Constants for locations
ops ℓ1 · · · ℓ𝑘 : -> Location .
--- States of the system
op <_:_; . . . ;_> <_; . . . ;_> : Location Real . . . Real︸            ︷︷            ︸

𝑛+𝑚

-> DState .

op [_:_; . . . ;_] <_; . . . ;_> : Location Real . . . Real︸            ︷︷            ︸
𝑛+𝑚

-> NState .

[[A]] defines SMT-variables to represent clock valuations,
parameter valuations, and time elapse:

vars X1 . . . X𝑛 : Real . --- Clock valuations
vars P1 . . . P𝑚 : Real . --- Parameter valuations
var T : Real . --- Time elapse

We define two functions [[_]]𝑏 and [[_]]𝑒 for translating para-
metric guards and invariants to terms, where

[[𝑡𝑟𝑢𝑒]]𝑏 = true [[𝑏1 ∧ 𝑏2]]𝑏 = [[𝑏1]]𝑏 and [[𝑏2]]𝑏
and for each inequality relation in {≥, ≤,=, >, <}, we have,
e.g.: [[𝑒1 ≤ 𝑒2]]𝑏 = [[𝑒1]]𝑒 <= [[𝑒2]]𝑒 and [[𝑒1 = 𝑒2]]𝑏 =

[[𝑒1]]𝑒 === [[𝑒2]]𝑒 . For arithmetic expressions, we define:
[[𝑒1 + 𝑒2]]𝑒 = [[𝑒1]]𝑒 + [[𝑒2]]𝑒 [[𝑥𝑅

𝑖
]]𝑒 = X𝑖 if 𝑥𝑖 ∉ 𝑅

[[𝑒1 − 𝑒2]]𝑒 = [[𝑒1]]𝑒 - [[𝑒2]]𝑒 [[𝑥𝑖 ]]𝑒 = X𝑖

[[𝑒1𝑒2]]𝑒 = [[𝑒1]]𝑒 * [[𝑒2]]𝑒 [[𝑥𝑑
𝑖
]]𝑒 = X𝑖 + T

[[𝑝/𝑞]]𝑒 = p/q if 𝑝, 𝑞 ∈ N [[𝑝𝑖 ]]𝑒 = P𝑖

[[𝑥𝑅
𝑖
]]𝑒 = 0/1 if 𝑥𝑖 ∈ 𝑅

[[_]] maps each transition (ℓ, 𝑔, 𝜎, 𝑅, ℓ ′) ∈ 𝐸, to the following
conditional rewrite rule ℓ-𝜎 :
crl [ℓ-𝜎] : < ℓ : X1 ; . . . ; Xn > < P1 ; . . . ; Pm >

=> [ ℓ ′ : [[𝑥𝑅1 ]]𝑒 ; . . . ; [[𝑥𝑅𝑛 ]]𝑒 ] < P1 ; . . . ; Pm >

if [[𝑔 ∧ 𝐼 (ℓ ′ ) [𝑥𝑖/𝑥𝑅𝑖 ] ]]𝑏 = true .

where 𝐼 (ℓ ′) [𝑥𝑖/𝑥𝑅𝑖 ] denotes substituting 𝑥𝑅𝑖 for 𝑥𝑖 in the ex-
pression 𝐼 (ℓ ′) for each 𝑖 . Furthermore, for each ℓ ∈ 𝐿, [[_]]
adds a conditional rewrite rule ℓ-tick:
crl [ℓ-tick] : [ ℓ : X1 ; . . . ; Xn ] < P1 ; . . . ; Pm >

=> < ℓ : X1 + T ; . . . ; Xn + T > < P1 ; . . . ; Pm >

if ([[𝐼 (ℓ ) [𝑥𝑖/𝑥𝑑𝑖 ] ]]𝑏 and T >= 0/1) = true [nonexec] .

Example 3.1. [[_]] transforms the PTA CM in Fig. 1 to the
following rewrite theory PTA-COFFEE (the complete set of
rules can be found in [9]):

mod PTA-COFFEE is pr REAL .
sorts State NState DState Location .
subsorts NState DState < State .
vars X1 X2 P1 P2 P3 T : Real .

ops idle add_sugar preparing_coffee done : -> Location .
op <_:_;_> <_;_;_> : Location Real Real Real Real Real

-> DState .
op [_:_;_] <_;_;_> : Location Real ... -> NState .

crl [add_sugar-cup] :
< add_sugar : X1 ; X2 > < P1 ; P2 ; P3 > =>
[ preparing_coffee : X1 ; X2 ] < P1 ; P2 ; P3 >
if (X2 === P2 and X2 <= P3) = true .

crl [preparing_coffee-tick] :
[ preparing_coffee : X1 ; X2] < P1 ; P2 ; P3> =>
< preparing_coffee : X1 + T ; X2 + T> < P1 ; P2 ; P3 >
if (X2 + T <= P3 and T >= 0/1) = true [nonexec] .

crl [preparing_coffee-coffee] :
< preparing_coffee : X1 ; X2 > < P1 ; P2 ; P3 > =>
[ done : 0/1 ; X2 ] < P1 ; P2 ; P3 >
if (X2 === P3 and 0/1 <= 10/1) = true .

crl [done-tick] :
[ done : X1 ; X2 ] < P1 ; P2 ; P3 > =>
< done : X1 + T ; X2 + T > < P1 ; P2 ; P3 >
if (X1 + T <= 10/1 and T >= 0/1) = true [nonexec] .

...
endm

3.2 Correctness of the [[_]] Transformation
In this section we relateA and [[A]] by a bisimulation. Since
a transition in A consists of a delay followed by a discrete
transition, we define a corresponding rewrite relation ↦→[[A]]
combining a “tick” rule application with a “transition” rule
application. We then show that these respective relations in
the concrete semantics of 𝑣 (A) and in [[A]] are bisimilar
w.r.t. initial state [ ℓ0 : 0/1 ; . . . ; 0/1 ] < 𝑣 (𝑝1 ) ; . . . ; 𝑣 (𝑝𝑚 ) >.

Definition 3.2. Let A = (Σ, 𝐿, ℓ0, 𝑋, 𝑃, 𝐼 , 𝐸) be a PTA and
𝑡1, 𝑡2, 𝑡3 be terms of [[A]]. We write 𝑡1 ↦→[[A]] 𝑡3 if there
exists a 𝑡2 such that 𝑡1 −→ 𝑡2 is a one-step rewrite applying
an ℓ-tick rule in [[A]] for some ℓ ∈ 𝐿 and 𝑡2 −→ 𝑡3 is a one-
step rewrite applying an ℓ -𝜎 rule of [[A]] for some ℓ ∈ 𝐿

and 𝜎 ∈ Σ. Furthermore, we write 𝑡1 ↦→∗
[[A]] 𝑡2 to indicate

that there exists a sequence of ↦→[[A]] rewrites from 𝑡1 to 𝑡2.

Let 𝑣 be a parameter valuation.
(
𝑇Σ,NState

)
𝑣
denotes the set

of 𝐸-equivalence classes of ground terms of sort NStatewith
parameter valuations 𝑣 , and 𝑆 denotes the set of concrete
states of 𝑣 (A). We define a map [[_]]𝑣 : 𝑆 →

(
𝑇Σ,NState

)
𝑣
,

relating concrete states in A to states (of sort NState) in
[[A]], where for all concrete states (ℓ,𝑤) ∈ 𝑆 , [[ (ℓ, 𝑤 ) ]]𝑣 =

[ ℓ : [[𝑤 (𝑥1 ) ]]𝑒 ; . . . ; [[𝑤 (𝑥𝑛 ) ]]𝑒 ] < [[𝑣 (𝑝1 ) ]]𝑒 ; . . . ; [[𝑣 (𝑝𝑚 ) ]]𝑒 >.

Theorem 3.3. Let A = (Σ, 𝐿, ℓ0, 𝑋, 𝑃, 𝐼 , 𝐸) be a parametric
timed automaton, 𝑣 (A) = (𝑆, 𝑠0,−→) be A’s concrete seman-
tics with respect to a parameter valuation 𝑣 , and [[A]] =

(Σ, 𝐸, 𝐿, 𝑅). Then, [[_]]𝑣 is a bisimulation map between the
transition systems (𝑆, 𝑠0,−→) and

( (
𝑇Σ,NState

)
𝑣
, [[𝑠0]]𝑣, ↦→[[A]]

)
.
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4 Symbolic Reachability Analysis
The theory [[A]] is not directly executable in Maude, since
the tick rules introduce a new variable T in their right-hand
sides. Section 4.1 describes how the rewrite theory [[A]]
can be symbolically executed using Maude-with-SMT, and
we prove in Section 4.2 that symbolic executions in [[A]]
correspond to transitions in the PZG of A. A significant
problem is that “standard” symbolic reachability analysis
using Maude-SE adds a new SMT variable to the symbolic
state in each tick step, which leads to nontermination if the
desired states are not reachable. To solve this problem, we
use “folding” [39] to ignore a new symbolic state when it is
subsumed by a previously encountered one. In Section 4.3 we
define and implement in Maude such symbolic reachability
analysis with folding. We prove that our procedure termi-
nates when the PZG is finite, and hence obtain a decision
procedure for reachability when the number of states in the
PZG of the automaton is finite.

4.1 Symbolic Reachability Analysis
Although the tick rules are not directly executable in Maude,
we can symbolically execute a rewriting-modulo-SMT theory
with the symbolic rewrite relation⇝. For example, we have
the following symbolic rewrite in our running example:

𝜙 ∥ [ idle : X1 ; X2 ] < P1 ; P2 ; P3 > ⇝[[A]]
𝜙 and T’ ≥ 0/1 ∥ < idle : X1 + T' ; X2 + T' > < P1 ; P2 ; P3 >

The SMT variables X𝑖 (resp. P𝑖) represent the values of the
clocks (resp. parameters). The variable T’ is a fresh variable,
of sort Real, created in the rewrite. This symbolic rewrite
captures all the infinitely many delays that can take place
when the automaton is in state idle.

Maude-SE allows us to solve symbolic reachability prob-
lems as illustrated in the following example.
Example 4.1. In the module PTA-COFFEE, the command

smt-search [ idle : X1 ; X2 ] < P1 ; P2 ; P3 > =>*
< done : X1' ; X2' > < P1 ; P2 ; P3 >

such that (X1 === X2 and X1 >= 0/1 and P1 >= 0/1
and P2 >= 0/1 and P3 >= 0/1) = true .

uses a breadth-first search strategy to answer the following
reachability question: are there values for the clocks and
parameters such that the location done can be reached from
the location idle? Note that the clocks and the parameters
are not given specific values, not even in the initial state. The
symbolic term to the left of the arrow =>*, together with the
constraint in the “such that” section of the query, specify
initial states where the values of the clocks are equal (X1
=== X2) but unknown, and where parameters and clocks are
all non-negative numbers. The first answer to this query in-
cludes the satisfiable constraint (syntax where) accumulated
along the path from idle to done:

Solution 1
state: < done : #3-T ; #1-T + #2-T + #3-T > <P1 ; P2 ; P3>

where X1 === X2 and X1 >= 0/1 and P1 >= 0/1 and P2 >= 0/1 and
... and #1-T:Real + #2-T:Real === P3 and
... and #3-T:Real <= 10/1 and #1-T:Real + #2-T:Real === P3

The terms #𝑖-T are fresh SMT variables generated when the
tick rules are applied. The result includes information about
the values of the clocks in location done: the value of the
first clock (X1’) is #3-T ≤ 10/1, while the second clock (X2’)
is the sum of the delays accumulated in locations add-sugar,
preparing-coffee and done, and therefore X2' >= P3.

4.2 Soundness and Completeness
This section shows that the transition system induced by the
symbolic rewrite relation⇝[[A]] is bisimilar to the PZG of
A. We start with a lemma establishing the correspondence
between a zone 𝑍 and the (SMT) boolean expression [[𝑍 ]]𝑏 .
This is useful to later show that (ℓ, 𝑍 ) is a valid reachable
state in the PZG of A (𝑍 cannot be empty) iff the boolean
expression in the corresponding constrained term in [[A]]
is satisfiable (and hence, reachable via⇝[[A]] ).

Lemma 4.2. For any zone 𝑍 , 𝑍 ≠ ∅ iff [[𝑍 ]]𝑏 is satisfiable.

Next we define operations on constrained terms corre-
sponding to those on zones. We use {ℓ : 𝑒1; . . . ; 𝑒𝑛} to denote
either [ℓ : 𝑒1; . . . ; 𝑒𝑛] or < ℓ : 𝑒1; . . . ; 𝑒𝑛 >. TZ is the set of
terms of the form 𝜙 ∥ {ℓ : 𝑒1; . . . ; 𝑒𝑛} < P1; . . . ; P𝑚 > where
P𝑖 are variables, 𝑒𝑖 expressions (possibly containing SMT
variables) and 𝜙 must contain at least one inequality for each
variable occurring after the symbol ∥ (e.g. #1-T ≥ 0/1). We
use𝑈 and 𝑉 to range over elements in TZ .
Definition 4.3. Given 𝑅 ⊆ 𝑋 , we use 𝑒𝑅𝑖 to denote the
expression 0/1 if 𝑥𝑖 ∈ 𝑅 and 𝑒𝑖 if 𝑥𝑖 ∉ 𝑅. Let 𝑈 = 𝜙 ∥ {ℓ :
𝑒1; · · · ; 𝑒𝑛}<P1; · · · ; P𝑚>. We define the following operations
on TZ − 𝑡𝑒𝑟𝑚𝑠:

• Reset: 𝑈 [𝑅] def
= 𝜙 ∥ {ℓ : 𝑒𝑅1 ; . . . ; 𝑒𝑅𝑛 } < P1; . . . ; P𝑚 >

• Time elapse: 𝑈↗ def
=

(𝜙 and T ≥ 0/1) ∥ {ℓ : 𝑒1 + T; . . . ; 𝑒𝑛 + T} < P1; . . . ; P𝑚 >

where T is a fresh variable (not occurring in 𝜙).
• Conjunction: Let 𝐺 be a boolean expression such
that 𝑣𝑎𝑟 (𝐺) ⊆ 𝑣𝑎𝑟 (𝑈 ). Then,

𝑈 ∧𝐺
def
= (𝜙 and 𝐺) ∥ {ℓ : 𝑒1; . . . ; 𝑒𝑛} < P1; . . . ; P𝑚 >.

• Instantiation: Given a clock valuation 𝑤 and a pa-
rameter valuation 𝑣 ,

𝑈 {𝑣,𝑤} def
= (𝜙 and 𝜓 ) ∥ {ℓ : 𝑒1; . . . ; 𝑒𝑛} < P1; . . . ; P𝑚 >

where𝜓 is the boolean expression

𝑒1 === [[𝑤 (𝑥1)]]𝑒 and · · · and 𝑒𝑛 === [[𝑤 (𝑥𝑛)]]𝑒 and

P1 === [[𝑣 (𝑝1)]]𝑒 and · · · and P𝑚 === [[𝑣 (𝑝𝑚)]]𝑒 .

𝑈 {𝑣,𝑤} equates (===) the expressions of the clocks with
the values given by𝑤 (similarly for the parameters). Hence,
𝑈 {𝑣,𝑤} agrees with the values assigned by 𝑣 and𝑤 .
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Definition 4.4 (Relation ∼). Define ∼ ⊆ (𝐿 × C) × TZ as
follows: (ℓ, 𝑍 ) ∼ 𝑈 = 𝜙 ∥ < ℓ : 𝑒1; . . . ; 𝑒𝑛 > < P1; . . . ; P𝑚 >
whenever for all 𝑣 and𝑤 , we have (𝑣,𝑤 |= 𝑍 ) iff the boolean
expression in𝑈 {𝑣,𝑤} is satisfiable.

Intuitively, a state (ℓ, 𝑍 ) in the PZG of A is related to the
symbolic state 𝑈 whenever the locations are the same and
the valuations that belong to the zone 𝑍 are consistent with
the values making the constraint 𝜙 in𝑈 true.

The following lemmas show that the operations on zones
agree with those in Definition 4.3.

Lemma 4.5 (Reset). Let 𝑅 ⊆ 𝑋 , 𝑍 ≠ ∅, and assume that
(ℓ, 𝑍 ) ∼ 𝑈 where 𝑈 = 𝜙 ∥ < ℓ : 𝑒1; . . . ; 𝑒𝑛 > < P1; . . . ; P𝑚 >.
Then, (ℓ, 𝑍 [𝑅]) ∼ 𝑈 [𝑅].

Lemma 4.6 (Time elapse). Let 𝑍 ≠ ∅, and assume that
(ℓ, 𝑍 ) ∼ 𝑈 where 𝑈 = 𝜙 ∥ < ℓ : 𝑒1; . . . ; 𝑒𝑛 > < P1; · · · ; P𝑚 >.
Then, (ℓ, 𝑍↗) ∼ 𝑈↗.

Lemma 4.7 (Conjunction). Let𝐺 be a guard or an invariant,
𝑍 ≠ ∅, 𝑈 = 𝜙 ∥ < ℓ : 𝑒1; . . . ; 𝑒𝑛 > < P1; . . . ; P𝑚 > and assume
that (ℓ, 𝑍 ) ∼ 𝑈 . Then, (ℓ, 𝑍 ∩𝐺) ∼ 𝑈 ∧ ([[𝐺]]𝑏 [Xi/𝑒𝑖 ]).

Recall that the relation⇒ on the PZG captures, in one step,
a discrete transition followed by a delay transition. Hence, a
state (ℓ, 𝑍 ) is ready to perform a discrete transition leading
to (ℓ ′, 𝑍 ′) where 𝑍 ′ = ((𝑍 ∩ 𝑔) [𝑅] ∩ 𝐼 (ℓ ′))↗ ∩ 𝐼 (ℓ ′) (if 𝑍 ′

is not empty). Let
2
⇝[[A]] be the application of a ℓ-𝜎 rule

followed by a tick rule, and let
2
⇝

∗
[[A]] be its reflexive and

transitive closure. The following Theorem shows that ⇒ on
the PZG is bisimilar to

2
⇝[[A]] on constrained terms.

Theorem 4.8. Let A be a PTA. ∼ is a bisimulation between
the transition systems (C, 𝑠0,⇒) and (TZ, 𝜙0 ∥ 𝑡0,

2
⇝[[A]])

where 𝑡0 = < ℓ0 : T; . . . ; T > < P1; . . . ; P𝑚 > and 𝜙0 = (Pi ≥
0/1 and T ≥ 0/1 and [[𝐼 (ℓ0)]]𝑏 [Xi/T]).

4.3 Symbolic Reachability Analysis with Folding
Many PTAs A generate finite PZGs (so reachability analy-
sis should terminate for both positive and negative queries),
while the number of symbolic states generated by smt-search
of the corresponding [[A]] is infinite. The problem is that
the search command stops exploring from a symbolic state
only if it has already visited the same state. In many cases,
due to the fresh variables created, symbolic states represent-
ing the same set of concrete states are not the same, even
though they are logically equivalent, as exemplified below.

Example 4.9. Consider the automaton in Fig. 3a. After
each iteration 𝑖 between ℓ0 and ℓ1, we have 𝑦 − 𝑥 ≥ 5𝑖
and hence, infinitely many different symbolic states. Af-
ter 10 iterations, the constraint 𝑦 ≥ 50 is satisfiable and
the state bad can be reached. In this case, the command
smt-search [l0 : 0/1;0/1] < > =>* <bad : X';Y'> < >

finds a solution to this reachability problem.

Now consider the automaton in Fig. 3b, where the loca-
tion bad cannot be reached. The execution of the command
smt-search [l0 : 0/1] <> =>* <bad : X'> <> does not ter-
minate, since the following symbolic states (omitting some
details for readability) appear while exploring the state space:
𝑠0 : 0/1 ≤ #0-T ∥ ⟨ℓ0 : #0-T⟩

𝑠1 : 𝜙0 and 5/1 ≤ #0-T and 10/1 ≥ #0-T + #1-T ∥ ⟨ℓ1 : #0-T + #1-T⟩

𝑠2 : 𝜙1 and 0/1 ≤ #2-T ∥ ⟨ℓ0 : #2-T⟩

𝑠3 : 𝜙2 and 5/1 ≤ #2-T and 10/1 ≥ #2-T + #3-T ∥ ⟨ℓ1 : #2-T + #3-T⟩

· · ·
where 𝜙𝑖 is the constraint in the state 𝑠𝑖 . Note that J𝑠0K = J𝑠2K
and J𝑠1K = J𝑠3K (i.e. 𝑠0 represents the same set of concrete
states as 𝑠2). However, the constrained term 𝑠0 is not equiva-
lent to 𝑠2 and the smt-search command keeps exploring the
successor states of 𝑠2. Note also that, due to the definition of
⇝, the constraints are always accumulated. For instance, 𝜙2
includes inequalities about #0-T and #1-T that are no longer
used in the expression representing the value of the clock 𝑥 .

We have therefore implemented our own symbolic reacha-
bility analysis command, which is based on the subsumption
mechanism in [39]. Essentially, we stop searching from a
symbolic state if, during the search, we have already en-
countered another state that subsumes it. More precisely, let
𝑈 = 𝜙𝑢 ∥ 𝑡𝑢 and𝑉 = 𝜙𝑣 ∥ 𝑡𝑣 . We define𝑈 ⊑ 𝑉 , meaning that
𝑈 is less general than 𝑉 , if there is a substitution 𝜃 making
𝑡𝑢 and 𝑡𝑣𝜃 equal and the implication 𝜙𝑢 ⇒ 𝜙𝑣𝜃 holds. In that
case, J𝑈 K ⊆ J𝑉 K [39]. Hence, during the search procedure,
if a term 𝑈 is reached and some term 𝑉 has already been
visited s.t. 𝑈 ⊑ 𝑉 , the state 𝑈 will not be further explored.
It is known that such reachability analysis with folding is
sound and generates no spurious counterexample [10].

The syntax of the implemented command is

red reachability((𝜙 ∥ 𝑡), ℓ, bound) .

The second and third parameters are optional. This com-
mand computes all the reachable symbolic states, using fold-
ing, starting from 𝜙 ∥ 𝑡 until either: (1) no new states can
be reached; (2) the location ℓ is reached; or (3) the search
exceeds the depth bound.

We could quickly implement a prototype of our new sym-
bolic reachability analysis algorithm using Maude’s meta-
programming features. For instance, the function metaMatch
applied to two terms𝑈 and𝑉 returns the set of substitutions
𝜃 such that 𝑈 equals 𝑉𝜃 , and the function metaCheck can
be used to delegate to the SMT solver the task of check-
ing whether the formula ¬(𝜙𝑢 ⇒ 𝜙𝑣𝜃 ) is unsatisfiable (and
hence, the implication valid). Details about the implementa-
tion can be found in the companion repository [8].

Example 4.10. For the automaton in Fig. 3b, the command

red reachability((X >= 0/1) || < l0 : X > < >) .

computes the set of reachable states starting from location
ℓ0, with any non-negative initial clock value. The result is:

9
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ℓ0 ℓ1 10 ≥ x bad

5 ≤ x

x ≥ 11

y ≥ 50

x := 0

(a) Automaton with two clocks.

ℓ0 ℓ1
10 ≥ x

bad

5 ≤ x

x ≥ 11
x := 0

(b) Automaton with one clock.

Figure 3. Automata in Example 4.9.

X >= 0/1 || < l0: X > < > ;; --- State 1
X >= 0/1 and 5/1 <= X and 10/1 >= X and #1-T >= 0/1

and 10/1 >= X + #1-T || < l1: X + #1-T > < > --- State 2

In contrast to smt-search, the above command terminates
and shows that there are only two (distinct) reachable sym-
bolic states, and that the location bad is not reachable.

Formally, the command reachable computes, iteratively,

the folding reachable transition system (T 𝑓

Z ,𝑈0,
2𝑓
⇝[[A]]) [12,

24] where T 𝑓

Z is defined as
⋃

𝑖∈N 𝑆𝑖 , 𝑆0 = {𝑈0} and 𝑆𝑛+1 =

{𝑈 | ∃𝑉 ∈ 𝑈𝑛 s.t. 𝑉
2
⇝[[A]] 𝑈 and𝑈 @ 𝑉 ′ for any 𝑉 ′ ∈

𝑆𝑘≤𝑛}; and
2𝑓
⇝[[A]]=

⋃
𝑛∈N (−→𝑛) where −→0= ∅ and −→𝑛+1=

{(𝑈 ,𝑉 ) ∈ 𝑆𝑛 ×
⋃

0≤𝑖≤𝑛+1 𝑆𝑖 | ∃𝑉 ′ .𝑈
2
⇝[[A]] 𝑉

′ and 𝑉 ′ ⊑ 𝑉 }.

Theorem 4.11 (Termination). If the PZG (C, 𝑠0,⇒) of a PTA
A is a finite transition system, then (T 𝑓

Z ,𝑈0,
2𝑓
⇝[[A]]) is also

a finite transition system.

Our new reachability analysis command therefore termi-
nates whenever the PZG is finite. Furthermore, it terminates
when Imitator terminates with default settings since they
both use subsumption, so generate the same part of the PZG.
However, Imitator also uses heuristics that may synthesize
parameters even if the PZG is infinite.

5 Parameter Synthesis and Analysis
Our executable rewriting-modulo-SMT semantics for PTAs
gives us the possibility of applying different formal analysis
methods for rewrite theories to PTAs. Section 5.1 shows
how various parameter synthesis and parametric reachability
problems can be solved with our methods, and Section 5.2
exemplifies how we can use Maude’s strategy language to
analyze a PTA with a given strategy. In both cases we also
provide model checking for PTA properties that go beyond
those handled by state-of-the-art tools such as Imitator.

5.1 Reachability and EF-synthesis
This section shows how the smt-search and reachability

commands can solve important synthesis and parametric
reachability problems for PTAs.
A state predicate is a boolean expression whose atomic

propositions are locations (e.g. the formula add_sugar holds
if the current location is add_sugar) and inequalities on
clocks and parameters (e.g. 𝑥1 ≠ 𝑥2).

Definition 5.1. LetA be a PTA and 𝜙 a state predicate. The
EF-emptiness problem asks: “is the set of parameter valua-
tions 𝑣 such that there exists a reachable state (ℓ,𝑤) in 𝑣 (A)
satisfying 𝜙 empty?”. EF-synthesis is the problem of comput-
ing parameter valuations 𝑣 such that a run of 𝑣 (A) reaches
a state satisfying 𝜙 . The safety synthesis problem AG¬𝜙 is
the problem of computing the set of parameter valuations
for which states satisfying 𝜙 are unreachable.
The search commands provide semi-decision procedures

(the number of symbolic states can be infinite and the synthe-
sis problem is undecidable) for solving the above synthesis
problems. We add [[ℓ]]𝑏 = L == ℓ (for a variable L of sort
Location) to the definition of [[_]]𝑏 . The command

smt-search [1] [ℓ0 : 0/1 ; ... ; 0/1 ] < P1 ; ... ; P𝑚 > =>*
< L:Location : X1' ; ... ; X𝑛' > < P1 ; ... ; P𝑚 >
such that [[𝜙 ]]𝑏 and P1 >= 0/1 and ... and P𝑚 >= 0/1 .

then tries to find a path from ℓ0 to an arbitrary location L
satisfying 𝜙 . The resulting constraint, if any, is an answer
to the synthesis problem EF𝜙 . The command reachability
can be used similarly.
EF-emptiness is obtained when the EF-synthesis termi-

nates without finding a path. Finally, the safety synthesis
problem AG¬𝜙 can be solved by finding all solutions for EF𝜙
and then negating the resulting constraint.
Example 5.2. Let 𝜙 be the output of the smt-search com-
mand in Example 4.1. Since 𝜙 is satisfiable, there are values
for the parameters such that done is reachable and the an-
swer to the EF-emptiness problem EF(done) is false. The
obtained constraint also gives us an answer to the corre-
sponding EF-synthesis problem as follows. Since the result
of the parameter synthesis only concerns the relations on
the parameters, we are interested in the formula 𝜙 ′ = ∃𝑋 .𝜙 ,
where 𝑋 includes all the variables in 𝜙 , but not the param-
eters. Using a quantifier elimination procedure, 𝜙 ′ can be
simplified to 0 ≤ 𝑝2 ∧ 𝑝2 ≤ 𝑝3 ∧ 0 ≤ 𝑝1. (We are currently
using the tactic qe of the Z3 theorem prover to automate this
step). This means that done is reachable whenever 𝑝2 ≤ 𝑝3.
The EF-synthesis problem EF(𝑥1 ≠ 𝑥2 ∧ preparing_coffee),

asking whether location preparing_coffee is reachable
with different values for the clocks, can be answered by:

smt-search [ idle : 0/1 ; 0/1 ] < P1 ; P2 ; P3 > =>*
< L : X1' ; X2' > < P1 ; P2 ; P3 >

such that (L == preparing_coffee and X1' =/== X2' and
P1 >= 0/1 and P2 >= 0/1 and P3 >= 0/1) = true .

The resulting constraint, after removing the existential quan-
tifiers, determines that 𝑝1 ≤ 𝑝2 ≤ 𝑝3.
Finally, consider the safety synthesis problem AG¬(𝑥1 >

𝑥2). As explained above, we need to compute the solutions
for EF(𝑥1 > 𝑥2). This PTA has infinitely many symbolic
states, since each extra iteration adding more sugar further
constrains the values for 𝑝1 and 𝑝2. The command

smt-search [1,10] [ idle : 0/1 ; 0/1 ] < P1 ; P2 ; P3 > =>*
< L : X1' ; X2' > < P1 ; P2 ; P3 >

10
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such that X1' > X2' and P1 >= 0/1 and P2 >= 0/1 and P3 >= 0/1.

searches for states where the first clock is strictly greater
than the second one. Maude does not find any solution to
this query in 10 steps. If we add the condition 2/1 * P1 > P2,
the number of symbolic states is finite (at most one dose of
sugar is possible). smt-search, without depth bound, does
not terminate. However, the new command reachability
terminates, finding 9 (different) symbolic states, with none
of them satisfying X1' > X2'. Therefore, when 2 × 𝑝1 > 𝑝2,
there is no valuation reaching a state where 𝑥1 > 𝑥2. □

It is worth remarking that Imitator only supports properties
over locations but not over clocks. Uppaal allows such prop-
erties, but does not support parameter synthesis. Our work
therefore provides new analysis capabilities for PTAs.

5.2 Strategies
We can use Maude’s strategy language to analyze PTAs with
different execution strategies. As exemplified below, such
strategies can be defined on constrained terms to restrict the
reachable symbolic states in (TZ, 𝜙0 ∥ 𝑡0,

2
⇝[[A]]).

Example 5.3 (Strategies). The answer 𝑝2 ≤ 𝑝3 to the syn-
thesis problem EF(done) in Example 5.2 does not constrain
𝑝1. This is due to the possibility of moving from idle to
done without adding sugar. What if the same PTA needs to
be analyzed under the assumption that at least one dose of
sugar is required? Instead of manually modifying the PTA—
which is error-prone and raises questions about whether the
different models are consistent—we can define the following
strategy to analyze our model when some sugar is required:

--- Strategy declarations
strat with-sugar : Nat @ State . --- Str. with parameter
strat add-sugar : Nat @ State .
--- Strategy definitions
sd with-sugar(N) :=

match C || < done : X1; X2> < P1 ; P2 ; P3 > --- Stop at done
or-else --- in location add_sugar, add sugar if needed

match C || < add_sugar : X1 ; X2 > < P1 ; P2 ; P3 > s.t.
validity(C implies X1 === X2) ; add-sugar(N) ; with-sugar(N)

or-else --- otherwise, apply any rule
all ; with-sugar(N) .

--- Adding n doses of sugar
sd add-sugar(0) := idle . --- No more sugar
sd add-sugar(s(N)) := add_sugar ; add_sugar-tick ; add-sugar(N).

The strategy with-sugar(N): (i) tests if the current lo-
cation is done and stops if that is the case; (ii) if the loca-
tion is add_sugar, it checks whether the accumulated con-
straint 𝐶 implies that the two clocks have the same value
(validity(F) uses the SMT solver to check whether the for-
mula not F is unsatisfiable); if so, the strategy add-sugar(N)
is applied, forcing N iterations in the location add_sugar; (iii)
otherwise, the other rules of the system (all) are applied.
The command below returns a boolean expression that,

after simplification, entails 𝑝1 ≤ 𝑝2 ≤ 𝑝3.

srew P1 >= 0/1 and P2 >= 0/1 and P3 >= 0/1
|| [ idle : 0/1 ; 0/1 ] < P1 ; P2 ; P3 >

using with-sugar(1) .

Solution 1 result State : ... #1-T >= P1 and #1-T <= P2 ...
|| <done : 0/1 ; #5-T + #6-T + #7-T> < P1 ; P2 ; P3 >

Maude’s strategy language has not been used before in
real-time systems specified in Maude or in rewriting with
SMT. The example above shows that combining such tech-
niques can lead to a novel mechanism to analyze PTAs. In
particular, it is possible to perform reachability analyses on
execution traces of the PTA that adhere to a given strategy.
Furthermore, the resulting constraint determines the values
of the parameters that enable such traces.

6 Benchmarks
In this section we compare the performance of Imitator, stan-
dard Maude-SE smt-search, and our prototype implemen-
tation of the command reachability on a number of PTAs
in the PTA benchmark library [7]. We compare the time it
takes for the three methods to solve the synthesis problem
EF(ℓ) for different locations ℓ in the automaton, where all the
queries have positive solutions. Figure 4 shows the execution
times of Imitator and Maude (with red circles for smt-search
and blue circles for reachability) in log-scale. The following
table describes the PTAs considered in Fig. 4 (the complete
set of benchmarks can be found in [8]):

Model Clocks Parameters Actions Locations Transitions

gear-1000 2 3 6 4074 4073

blowup-200 3 5 4 702 800

Pipeline_KP12_2_3 5 6 11 100 244

RCP 6 5 16 95 198

7 Related Work
Formal Analysis of Parametric Timed Automata. Since most
analysis and parameter synthesis problems are undecidable
for PTAs [4], approaches to address them have focused on
heuristics. The state-of-the-art PTA tool, Imitator [5], uses
techniques such as subsumption [40] and convex zone merg-
ing [6] to provide efficient bounded and unbounded reacha-
bility, EF-synthesis, deadlock checking, minimal-time reach-
ability synthesis, and robustness analysis for PTAs.

As shown in Section 6, the PTA-specific Imitator tool gen-
erally has better performance than our Maude-with-SMT-
based analysis. In addition, although our reachability com-
mand terminates whenever the PZG of the PTA is finite,
additional heuristics implemented in Imitator allow it some-
times to terminate even when the PZG is infinite (and Maude
will loop). Imitator also provides methods for liveness and
robustness that we do not yet support for [[A]]. On the
other hand, in this paper we show how we can analyze PTAs
with user-defined strategies, and allow state properties that
not only include locations but also conditions on clocks and
parameters, which are not supported by Imitator.
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Figure 4. Execution times of Imitator and Maude in log-scale. From left to right, we consider the benchmarks (see Section 6):
gear-1000, blowup-200, Pipeline_KP12_2_3, RCP.

There are very few parameter synthesis tools for PTAs.
The algorithms described in [15] perform time-bounded
model-checking. Roméo [34] provides parameter synthesis
for parametric timed Petri nets instead of PTAs.

Rewriting Semantics for Timed Automata. The paper [46]
gives a formal semantics for timed automata using (real-time)
rewrite theories. In contrast, our paper targets parametric
timed automata, and provides a more elaborate “analysis-
friendly” semantics than the one in [46], which was never
meant/optimized for execution.

Analysis of Rewriting-based Real-Time Systems. As explained
in the introduction, because of its expressiveness and gener-
ality, rewriting logic—in particular the Real-Time Maude [48,
49] extension of Maude—has been applied to a wide range
of real-time systems [43] and has provided formal semantics
and formal analysis to a number of modeling languages [42].
However, Real-Time Maude does not support symbolic anal-
ysis methods: when it applies a tick rule, it advances time
by a given concrete value. Therefore, most system behav-
iors are not covered by the formal analysis, which is hence
only sound for a restricted class of time-deterministic sys-
tems [47], and is not sound for timed automata. In contrast,
in this paper we develop sound and complete symbolic anal-
ysis methods for a certain class of “time-nondeterministic”
systems, namely, PTAs. Furthermore, the techniques seem
general and should be applicable to other classes of real-time
rewrite theories, which will be investigated in future work.
Rewriting with SMT has also been applied to formally

analyze cyber-physical systems such as virtually synchro-
nous systems [31] and soft agents [41]. They focus on hybrid
systems with continuous dynamics, and do not consider
parametric timed automata.

8 Concluding Remarks
A wide range of sophisticated real-time systems can be for-
malized in rewriting logic and formally analyzed in (Real-
Time) Maude, which is also a suitable semantic framework

and formal analysis backend for industrial modeling lan-
guages. So far Real-Time Maude has only provided explicit-
state analysis methods, which are not sound for many real-
time systems, including timed automata. It is clear that sym-
bolic methods are needed for sound and efficient analysis
of real-time systems. The recent integration of Maude and
SMT solving has made symbolic analysis in Maude possible.
In this paper we take the first steps towards providing

sound and efficient symbolic analysis methods for real-time
rewrite theories by developing sound and complete analysis
methods for parametric timed automata (PTAs), specified as
rewrite theories. Since standard Maude-with-SMT reachabil-
ity analysis does not terminate for real-time systems when
the desired states are unreachable, we develop and imple-
ment (a prototype of) a general “folding”-based symbolic
reachability analysis method and show that it terminates
when the reachable symbolic state space of the PTA is finite.
We show how our methods can be used to solve important
parameter synthesis problems for PTAs. We also provide
analysis methods for PTAs that are not supported by the Imi-
tator tool, including symbolic reachability analysis combined
with user-defined analysis strategies, and allowing clocks
and parameters in state propositions. Furthermore, our exe-
cutable semantics together withMaude’s meta-programming
features provide an environment where new analysis meth-
ods for PTAs can be quickly developed and tested before
being hard-coded into the Imitator tool.

In future work we should: develop symbolic methods for
larger classes of real-time rewrite theories; develop a useful
timed strategy language; and extend Maude’s and Real-Time
Maude explicit-state LTL and timed CTL model checkers to
the symbolic setting. These extensions will then also provide
powerful new analysis methods for PTAs.
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